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Abstract

We study the classical solution of the nonlinear inverse boundary value problem for
for pseudo hyperbolic equation of the fourth order The essence of the problem is that it is
required together with the solution to determine the unknown coefficient. The problem is
considered in a rectangular area. To solve the considered problem, the transition from the
original inverse problem to some auxiliary inverse problem is carried out. The existence
and uniqueness of a solution to the auxiliary problem are proved with the help of
contracted mappings. Then the transition to the original inverse problem is made, as a
result, a conclusion is made about the solvability of the original inverse problem.
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1. Introduction

Let D, ={(x,t): 0<x<1, 0<t<T}and f(x1t), @(X), w(x),h(t) are

given functions defined for x €[0,1], t €[0,T]. Consider the following inverse
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problem: to find a pair {u(x,t), a(t)} of the functions u(x,t), a(t) satisfying
the equation

Uyt (X, t) — Uy, (X’ t) + :Bluxxxx (X’ t) _ﬁzuxxxxxx(x! t) =
=a(t)u(x,t)+ f (x,t) (x,t)eDy, (1)
with initial
u(x,0)=(x), u(x0)=w(x) (0<x<1), (2)
and boundary conditions
u(0,t) =u, (L,t) = u, (0, t) =u,, (L1) =u,,, (0, ) =u

and with additional condition

L) =0 (0<t<T)(3)

XXXX

jg(x)u(x,t)dx:h(t) 0<t<T), (4)

where 3 >0, f, >0-are fixed numbers.
Introduce the designation

C*?(D;) ={u(x,t) :u(x,t) € C**(D; ), U, (X, 1) € C(D; )}
Definition. A pair {u(x,t),a(t)} of the functions u(x,t)eC®>*(D;) and
a(t) eC[0,T] satisfying equation (1) in D;, condition (2) in [0,1] and
conditions (3)-(4) in [0,T] we call a classical solution to boundary value (1)-(4).
We prove the following
Teopemal.Let f (x,t)eC(D;), g(x), ¢(x), w(x)eC[0,1], h(t)#0 (0<t<T)

and the matching conditions
1 1
[9()p(x)dx=h(0), [ g(x)w (x)dx =h'(0) .
0 0

are satisfied. Then the problem of finding a classical solution to problem (1)-(4) is
equivalent to the problem of determining the functions u(x,t) e C**(D;)
anda(t) e C[0,T] from (1)-(3) and

() = [ GOOU, (6 AU + B, [ G (X) U (X, )X = B, [ GO0 U (X, 1) X =

72



Yashar Mehraliyev, Yusif Sevdimaliyev, Afag Huseynova / Journal of mathematics & Computer Sciences v. 2(1) (2025) 71-81
1
=a()h(t)+ [ g() f (x,t)dx (0<t<T). (5)
0

Proof. Let {u(X,t),a(t)} be a classical solution to problem (1)-(4). Since

h(t) € C*[0, T], differentiating (4) two times over t we get
1 1
Ig(x)ut(x,t)dx =h'(t), Ig(x)un(x,t)dx =h"(t) (0<t<T). (6)
0 0

We multiply equation (1) by the function g(X) and integrate the resulting

equality from O to 1 over X, we get:

A 90U 00X [ 900U, (X, + ] 900U (DK~

] 900U (X, D= ()] (U DX+ 9(X) { (X X0 <E<T) (7)

From this considering (4) and (6) we arrive at (5).
Now let’s suppose that {u(x,t),a(t)} is a solution of problem (1)-(3), (5).

Then from (5) and (7) we get

;—;U g(x)u(x,t)dx— h(t)J = a(t)U g(x)u(x,t)dx— h(t)J (0<t<T) (8)
By virtue of (2) and Jl.g(x)go(x)dx =h(0), Jl‘ g(X)y (x)dx =h’(0) , we have
[ 9()u(x,0)dx—h(0) = [ g(x)¢(x)dx—h(0) =0,

J 909U, (0.)dx—h'(0) = [ g () (x)dx—h'(0) =0. )

From (8), taking into account (9), it is clear that condition (4) is also satisfied. The
theorem is proved.
2. Solvability of the inverse boundary value problem

The first component U(X,t) of the solution {u(x,t),a(t)} to problem (1)-

(3), (5) we seek in the form
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u(x,t) = iuk (t)sin 4, x (ﬂk :%(Zk —1)) , (10)
k=1
where
U, (t) = 2ju(x,t)sin Axdx (k=12,..).
0

Then applying the formal Fourier scheme, from (1) and (2) we obtain

u' )+ (2 + B + B2 () =F (t;u,a) (0<t<T;k=12..), (11)
u ) =g, u 0=y, (k=12.), (12)
where

F.(t;u,a)=a(t)u, )+ f () , f (1) =Jl' f (x,t)sin 4, xdx,

1 1
0. = 2[ p(¥)sin Axdx, y, =2[w(¥)sin xdx (k=12..).
0 0
Solving problem (11)-(12) we find
t
u, (t)=¢, cos ﬂk”ﬂil//k sin ,Bkt+ﬂij' F.(z;u,a)sin g (t—7)dz(k=12,..) (13)
k k 0

where

Bo=NAE+BA+BA (K=12..).
After substitution of the expression U, (t) (k=12,..) into (10) for the
determination of U(X,t) we get
u(x,t) =

= i{(pk cos St +i(/,k sin St +ij F.(z;u,a)sin g (t —r)dr}sin AX. (14)
k=1 ﬂk ﬁk 0

Now from (5) taking into account (10) we have

a(t) =[h(®)] " x
x{h”(t) _J' g(x) f (x,t)dx+i(i§ + B2 + Bo g Uy (t)_[ g(x)sin Akxdx}. (15)
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In order to obtain an equation for the second component a(t) of the solution
{u(x,t),a(t)} of problem (1)-(3), (5) we substitute expression (13) into (15):

a(t) = [h(t)]l{h"(t) ~[900 T (x e Y (% + A +ﬂzﬂi){¢k cos fit+

+ﬂi1//k sin 'BKHﬁik-:[Fk (z;u, p)sin S, (t—r)drﬁg(x)sin ﬂkxdx}. (16)

k
Thus, solution of problem (1)-(3),(5) is reduced to the solution of system (14), (16)
with respect to the unknown functions u(x,t) and a(t).

To study the problem of the uniqueness of the solution of problem (1)-(3),
(5), the following lemma plays an important role.
Lemma. If {u(X,t),a(t)} is arbitrary classical solution of problem (1)-(3), (5), then

the function
1
U, (1) = 2[u(x,t)sin Zxdx (k=12..)
0

satisfies system (13)in [0, T].
Proof. Let {u(x,t),a(t)} be any solution to problem (1)-(3), (5). Then multiplying
both sides of equation (1) by the function 2sin 4, x (k =1,2,...), integrating the

obtained equality over X from 0 to 1 and using the relations
2

1
2Iutt(x,t)sin A Xdx = d
0

W(Z!u(x,t)sin ﬂkxdxj =u/(t) (k=12,..),

1 1

2[ U (x,1)sin A xdx= £ 2] u(x,t)cosﬂkxde:ﬂ;‘uk(t) (k=12..),

0 0

Zj‘uxx(x,t)sin A xdx = —/Ii(zjl'u(x,t)sin ﬂkxdxj =-2u (t) k=12..),

1

ZIuXXXXXX(x,t)sin A XdX = —ﬂﬁtﬁu(x,t) cosﬂkxde =-2u (t) (k=12,..)

0
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we obtain that equation (11) is satisfied.
Similarly, the fulfilment of (12) is obtained from (2).

Thus u, (t) (k=12,...) is a solution to problem (11), (12). As immediately follows
from this the function u,(t) (k =12,..) satisfies to system (13) on [0,T].

Lemma is proved.

1
It is obvious that if uk(t):2J.u(X,t) sin 4, xdx (k=1,2,...) is a solution of
0

system (13), then the pair of {u(x,t),a(t)}functions u(x,t) :Z u, (t)cos 4, x
k=1

and a(t) is a solution to system (14), (16).

This lemma implies the validity of the following
Consequence. Let system (14), (16) have a unique solution. Then problem (1)-(3),
(5) cannot have more than one solution, i.e. if problem (1)-(3), (5) has a solution,
then it is unique.
Now, in order to study problem (1)-(3), (5) consider the following spaces.

1. Denote by B;T [15] the set of all functions U(X,t) of the form

u(xt) = > u, (t)sin 2,x (zk =g(2k —1)),
k=1

Defined on D;, where each of the functions u, (t) (k=12,...) is continuous on
[0,T] and

x 2

3000 = 0 Ol || <222

kL

The norm in this space is defined as

||u(x,t)||B;T =J(u).

2. By E/ we denote the space of the vector functions {U(X,t),a(t)} such that
u(x,t)e B, , a(t)e C[0,T] and equip this space by the norm

[2le; =uCx O, +a®lcror)-

7
Clearly, B,; and E/ are Banach spaces.
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Now we consider in E/ the operator

O(u,a) ={P,(u,a), ®,(u,a)},

where
@, (u,a)=u(x,t) = iﬁk (t)sin 4, x, @,(u,a)=af(t),

U, (t) (k=212..) and a(t) are the right hand sides of (13) and (16),

correspondingly.

Obviously
el =p, L<B<A+B+B, L= (k=12,.)..

Then we have

[ki<zz||ak<t>||qm>2j [kiwcokpj +—(zw| |>2j2+

1k1

2RO SOy | 0

N

Usz (@)? dr]

0 k=1

+

C[0,T]

h"(t)—'lfg(x) f(x,t)dx

3 Oler, =0T HW{

#9000+ A, +ﬂ2>[§z:j2 (i(zzlwklsz +(i(ﬂilw k|)2j+

+\/?Ui(/1‘k‘|fk (T)|)2dr]2 N T||a(t)”¢[0ﬂ(i(m|uk(t)”qo;])zjz . (18)

k=1

Assume that the data of problem (1)-(3), (5) satisfy the following conditions:

1.9(x) C°[0], ¢ (x) € L,(0), ¢(0) = ¢'()) = ¢"(0) = 9" () =
=9(0) =9 (1) =¢"(0)=0.

2.p(x) eC701], y® (x) e L,(01), w(0) =y’ =" (0) =" =0 .
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3. (1), ,(x1), £, (X, 1), F (X 1) €C(Dy), fu(X,1) €L, (Dy),
fO,t)=f@Qt)="1,0,t)="f,  Lt)=0 (0<t<T).
4.5 >0,5,>0,9(x)eC[0]], h(t) e CZ[O,T] ()0 (0<t<T).
Then from (17)-(18) we have

”J(X’t) Bj; < A:L(r) + Bl(T)”a(t)HC[O,T]”u(x’t)”B;T ! (19)
[A®]egory < AT+ By (MJa®)] o 7, [ux, )7 (20)
where
2 2T
AM =2 W, g, + ), g+ 5 a0,
8-+ 4y,
&

o0 cyo L+ B+ B2)

C[0,T]

T D), (DTJ},

A(T) = H[h(t)]luw{ h*(t) —fg(x) f (x,t)dx

+Hr )

1
i 2
-2 ]
X(kz_l"ik ] [qu (X) L,(0,1) L,(0,1)

e )01 o0l 557

From inequalities (19)-(20) we conclude
”G(X’t) Bl: +||a(t)”c[o,T] = A(T) + B(T)”a(t)”c[o,T]”u(X’t)

co,T

(21)

Bir
where

AM) =AM +A(T), B(M)=B(T)+B,(T).

So, we can prove the following theorem:
Theorem 2. Let conditions 1-4 be satisfied and

(A(I')+2)ZB(T) <1. (22)
The  problem (1)-(3),(5) has a wunique solution in the ball
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K=Kg(l|zlls <R=A(T)+2) of the space E/.

Proof. In the space E; consider the equation
7=z, (23)
where 7z = {u, a}, the components @, (u,a) (i =1,2) of the operator ®(u,a) are
defined by the right hand sides of equations (14) and (16) .
Consider the operator ®(u,a) in the ball K =K from E/. Similarly to

(22) we obtain that the estimations

2], < AT+ Ba(®)] Jutx.0]; 24)
|0z, - Dz, ||, <
< BR(a, ()~ 8, (0] g s (x,1) ~Uy (). ). (25)

for the arbitrary z,7,,z, € K; . Then, from estimates (24), (25), taking into
account (22), it follows that the operator @ acts in the ball and is contractive.
Therefore in the ball K =K the operator ® has a single fixed point {u,a}

which is a unique solution to equation (23) in the ball K=K, i.e. {u,a} is a
unique solution to system (14)-(16) in the ball K =K.

The function U(x,t) as an element of the space BZ’T, has continuous
derivatives
u(x,t), u, (x,t), u, (x,t),u,, (x,t),u

As one can easily see from

XXX XXXX (X’t) ! uXXXXX(X7t)’ uXXXXXX(X7t) in DT .

(i(@llu;’(t)||cm)2j2s(1+ﬂ1+ﬂz)(i(z;||uk(t>||c[m>2]"‘+

#1000+ a0, 60 +b(O)u,, (x B

C[0,T] L, (0.1) )

It implies that U, (X,t) are continuouin D;.

It is easy to check that equation (1) and conditions (2), (3) and (5) are
satisfied in the usual sense. Therefore, {u(X,t),a(t)}is a solution to problem (1)-

(3), (5), and, by virtue of the corollary of Lemma 1, it is unique in the ball
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K =K,.
The theorem is proved.
Using Theorem 1, we prove the following
Theorem 3. Let all conditions of Theorem 2 be satisfied and

J300000dx=h(0), [ 900y (x)dx=h'©).

The problem (1)-(4) has wunique classical solution in the ball

K = K (llzll <R = A(T)+2) from E/ .
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