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Abstract 

In this paper, we study the properties of partial and mixed moduli of smoothness of 

fractional order in the case of functions with two variables that are 2 –periodic in each 

variable. Estimates of the type of the Marchaud estimate for the above characteristics of 

functions with two variables are proved. 
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1. Introduction 
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 Let us introduce the following notations (see [ 2 ]):  
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- mixed modulus of smoothness of the order 0r  with respect to the  first 
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In formulas (1) - (3), the coefficients ir
jA   and 1

jA  are determined 

from the relations  
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It is obvious that   
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where 0r , 0 . 

The numbers 
nA  are called Cesaro numbers of order  . They have an 

explicit representation (see [ 3 ]):  
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If 0r , 0  are integers, then the differences (1) - (3) become ordinary 

differences of integer order, since 1 rj , 1 m , 01 r
jA , 0
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From (6) it follows that  
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In particular, It follows from here  that the series (1) – (3) converge in the 

space 2T
C : 
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In this paper, we study the properties of partial and mixed moduli of 

smoothness of fractional order in the case of functions with two variables that are 

2 –periodic in each variable. Estimates of the type of the Marchot estimate for 

the above characteristics of functions with two variables are proved 

 

2. Main results 

Let's first establish some simple properties of the functions   
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Property 1.  For any 0r , 0  
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Proof is obvious.  

Property 2. For any 0r , 0  the following inequalities hold true: 
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where and in what follows, C  denotes various constants in various inequalities 

that do not depend on f . 

Proof.  For rr  10  and   10 , we have  
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For 011  r , from the last inequality  follows the inequality (9), and for 

rr  10 ,   10  follows the inequality (10). In particular, for 1,1  r  

assuming 1,1 11  r  in (10), we find that   0,
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Property 3. For any 0r , 0  holds the following inequality 
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Proof. In [5], a representation for a function of one variable was proved:  
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From this, it is clear that there is a representation: 
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where coefficients 1r
jB  determined from the expansion  
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Using representation (12) and taking into account that the coefficients 
nB  

satisfy estimation (6), we obtain relation (11).  

Property 4. For any 0r  and Nk   
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This property is proved by using the representation  
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jC  are determined from the expansion  

  j

j

r
j

rk xCxx 




 
0

111  .                                           (16) 

Remark 1. It is clear from the proofs of Properties 3 and 4 that the following 

inequalities are also true:  
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From this we obtain the required.  

We prove the main theorems using properties 1-5 according to the scheme 

of work ([ 1 ]). 

Theorem 1 (an analogue of Marchaud's inequality [ 1 ]). Let 2T
Cf  . Then 

for any 0r , 11 r , 0 , 
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Proof.  Let us first consider the case of 1rr  . Let 
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Further, taking into account that for any integers 0j , 
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The validity of estimation (20) with 
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Thus, (20) is proved for  1rr  . Inequality (20) is obvious for 1rr   and for 1rr   it 

is proved by successive application of the above procedure. The theorem is 

proved.  

Remark 2. Similarly to the proof of Theorem 1, we can prove the following 
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