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Abstract 

We examine the longitudinal momentum densities within extended objects of the 
momentum component P+, and find relativistically exact connections to Fourier transforms 
of electromagnetic form factors with respect to the momentum transfer in the transverse 
direction. The electromagnetic form factors are obtained by the second moments of 
generalized parton distributions.  
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1. Introduction  

The soft-walled AdS/QCD model [1]-[3], based on breaking the conformal 
symmetry due to a second-order expansion field, has made significant progress in 
describing and understanding the hadron structure (mass spectrum, parton 
distributions, and form). factors, thermal properties, etc.) [4]. One of the main 
advantages of soft-walled AdS/QCD is the analytical application of quark counting 
rules [5] in the description of hadronic form factors in large Q2 (power scaling) [4]-
[15]. The parton distributions of quarks and gluons in hadrons, along with their form 
factors, play an important role in the QCD description of hadron structure and spin 
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physics (for reviews see, for example, Refs. [16–20]). Based on the QCD 
factorization, the effects of strong interactions at small and long distances can be 
separated, characterizing quarks and gluons' perturbative and non-perturbative 
dynamics, respectively. In particular, the non-perturbative part is parameterized by 
parton distribution functions, which are universal functions for each hadron and 
are independent of the specific process. As these universal parton distributions 
cannot be calculated directly in QCD, they are either subtracted from the data 
(world data analysis) or calculated using lattice QCD, or their GPDs in QCD-based 
approaches (lightfront QCD, AdS/QCD, quark and potential models, etc.) applied to 
extract or estimate (for a recent overview, see eg Ref. [17]). 

Generalized parton distributions (GPDs) contain important information about 
hadronic structure [21-22]. The hadronic structure studied in various scattering 
processes can be encoded as so-called GPDs. Specifically, there are two types of 
helix-independent quark GPDs in the leading twist-2, designated 𝑯𝒒(𝒙, 𝛏, 𝒕). and 
𝑬𝒒(𝒙, 𝛏, 𝒕) in the nucleon. Due to the non-perturbative nature of these functions, it 
is impossible to calculate them directly from Quantum Chromodynamics (QCD), and 
this has motivated the development of other ways to access GPDs. 

This relies on parameterizations of the quark wave function or directly on GPDs, 
uses constraints imposed by the sum rules that relate parton distribution functions 
to nucleon electromagnetic form factors [22], or includes a precise x behavior to 
improve calculations of some hadron properties. with GPDs. Some examples of this 
procedure can be found, for example, in [18-24]. 
 In this work, we consider the soft-wall case, i.e. we perform a matching of 
the nucleon electromagnetic form factors considering two main ideas: we use sum 
rules, derived in QCD [15, 16], which contain the GPDs for the valence quarks, and 
we consider specific integral representations obtained in the AdS/QCD soft-wall 
model [22]. The paper is structured as follows. In Sec. II we discuss electromagnetic 
form factors. In Sec.III we discuss generalized parton distributions. In Sec. IV 
discusses charge density for nucleon. In Sec. V we present the numerical analysis. 

2. Electromagnetic form factors  

Electromagnetic form factors (EFFs) can be obtained by the 𝑥 moments of 
the generalized parton distributions (GPDs). This section briefly reviews the 
prescription to extract GPDs form factors in the AdS/QCD soft-wall model.  

The nucleon EFFs 𝐹1
𝑁 and 𝐹2

𝑁 are defined by the matrix element of the 
electromagnetic current as 

 ⟨𝑝′|𝐽𝜇(0)|𝑝⟩ = �̅�(𝑝′) [𝛾𝜇𝐹1
𝑁(𝑡) +

𝑖𝜎𝜇𝑣

2𝑚
𝑞𝑣𝐹2

𝑁(𝑡)]𝑢(𝑝) (1) 

where 𝑞 = 𝑝′ − 𝑝 is the momentum transfer; 𝑚 is the nucleon mass; and 𝐹1
𝑁 and 

𝐹2
𝑁 (𝑁 = 𝑝 , 𝑛 correspond to proton and neutron) are the Dirac and Pauli form 

factors. 
 We summarize the relevant results obtained for nucleon form factors by 
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Abidin and Carlson [23] using an AdS/QCD model to derive GPDs in AdS/QCD. It 
relies on the soft-wall breaking of conformal invariance by introducing a quadratic 
expansion field 𝛷(𝑧) = 𝑘2 𝑧2 in action [23]. Such a method leads to Regge-like 
mass spectra in the baryonic sector. Note that an analogy AdS/QCD approach for 
baryons was developed by Brodsky and de Teramond in [24, 25]. It should be 
emphasized that in both approaches the introduction of the dilaton field is based 
on the idea of obtaining the simplest analytical solution of the equations of motion 
of the string mode. Other corrections may be included, such as higher powers in 
the holographic coordinate, although they do not significantly change the physics. 
The AdS metric is given by: 

𝑑𝑠2 = 𝑔𝑀𝑁𝑑𝑥𝑀𝑑𝑥𝑁 =
1

𝑧2 (𝜂𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 − 𝑑𝑧2)              (2) 

where 𝜂𝜇𝜈 = diag(1,−1,−1,−1), 𝜇, 𝜈 =  0, 1, 2, 3. 
 The action on the 5-dimensional AdS space, which generates the nucleon 
form factors, is [23]: 

𝑆 = ∫𝑑4𝑥𝑑𝑧√𝑔𝑒−Φ(𝑧)(Ψ̅𝑒𝐴
𝑀Γ𝐴𝑉𝑀Ψ +

𝑖

2
𝜂𝑆,𝑉Ψ̅𝑒𝐴

𝑀𝑒𝐵
𝑁[Γ𝐴, Γ𝐵]𝐹𝑀𝑁

(𝑆,𝑉)
Ψ),  (3) 

where 𝐹𝑀𝑁 = 𝜕𝑀𝑉𝑁  −  𝜕𝑁𝑉𝑀 and 𝑉, 𝑆 indices represent the isoscalar and 
isovector contributions to electromagnetic form factors; 𝑔 = |𝑑𝑒𝑡𝑔𝑀𝑁|; 𝑒𝐴

𝑀 = 𝑧𝛿𝐴
𝑀 

is the inverse vielbein; Γ𝐴 = (𝛾𝜇 , −𝑖𝛾5) and 𝜂𝑆,𝑉 are the couplings constrained by 
the anomalous magnetic moment of the nucleon, 𝜂𝑝 = (𝜂𝑠 + 𝜂𝑉)/2 and 𝜂𝑛 =
(𝜂𝑠 − 𝜂𝑉)/2. 
 In this model, the form factors for the nucleon are given by [23] 
 

    𝐹1
𝑝(𝑄2) = 𝐶1(𝑄

2) + 𝜂𝑝𝐶2(𝑄
2),                                            (5) 

𝐹2
𝑝(𝑄2) = 𝜂𝑝𝐶3(𝑄

2), 

𝐹1
𝑛(𝑄2) = 𝜂𝑛𝐶2(𝑄

2), 

𝐹2
𝑛(𝑄2) = 𝜂𝑛𝐶3(𝑄

2), 

where the structure integrals 𝐶𝑖(𝑄
2) are defined  

 

𝐶1(𝑄
2) = ∫𝑑𝑧𝑒−Φ(𝑧) 𝑉(𝑄,𝑧)

2𝑧3 (𝜓𝐿
2(𝑧) + 𝜓𝐿

2(𝑧)), 

  𝐶2(𝑄
2) = ∫𝑑𝑧𝑒−Φ(𝑧) 𝜕𝑧𝑉(𝑄,𝑧)

2𝑧2 (𝜓𝐿
2(𝑧) − 𝜓𝐿

2(𝑧)),                                  (6) 

𝐶3(𝑄
2) = ∫𝑑𝑧𝑒−Φ(𝑧) 2𝑚𝑉(𝑄,𝑧)

2𝑧2 𝜓𝐿(𝑧)𝜓𝑅(𝑧), 

where 𝑚 is the mass of nucleon. 𝜓𝐿(𝑧)and 𝜓𝑅(𝑧) are normalizable wave functions, 
which are left and right-handed nucleon field: 
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𝜓𝐿(𝑧) = 𝑘3𝑧4,         𝜓𝑅(𝑧) = 𝑘2𝑧3√2                                                   (7) 
 

The 𝑘 value is fixed by simultaneous alignment to the mass of the proton and rho 
meson, and the alignment gives the value 𝑘 = 0.350 GeV. The 𝜂𝑝 and 𝜂𝑛 
parameters can be determined by equaling the 𝐹2(0) value to the experimental 
value: 𝜂𝑝 = 0.224, 𝜂𝑛 = −0.239. 
 For soft wall, the bulk-to-boundary propagator model is given by [12] 

    𝑉(𝑄, 𝑧) = Γ(1 + 𝑎)𝑈(𝑎, 0, 𝑘2𝑧2) = 𝑘2𝑧2 ∫
𝑑𝑥

(1−𝑥)2
𝑥𝑎𝑒−

𝑘2𝑧2𝑥

1−𝑥
1

0
,                  (8)  

where 𝑎 =
𝑄2

4𝑘2. 

 

3. Generalized parton distributions 

The sum rules relating the Dirac and Pauli form factors and the GPDs read as [30] 
 

𝐹1
𝑝(𝑡) = ∫ 𝑑𝑥(

2

3
𝐻𝑣

𝑢(𝑥, 𝑡) −
1

3
𝐻𝑣

𝑑(𝑥, 𝑡))
1

0
 ,                          (9) 

𝐹1
𝑛(𝑡) = ∫ 𝑑𝑥(

2

3
𝐻𝑣

𝑑(𝑥, 𝑡) −
1

3
𝐻𝑣

𝑢(𝑥, 𝑡))
1

0
,  

𝐹2
𝑝(𝑡) = ∫ 𝑑𝑥(

2

3
𝐸𝑣

𝑢(𝑥, 𝑡) −
1

3
𝐸𝑣

𝑑(𝑥, 𝑡))
1

0
, 

𝐹2
𝑛(𝑡) = ∫ 𝑑𝑥(

2

3
𝐸𝑣

𝑑(𝑥, 𝑡) −
1

3
𝐸𝑣

𝑢(𝑥, 𝑡))
1

0
. 

where the variable 𝑥 is equal to the light-cone momentum. We obtained from (9) 
 

     ∫ 𝑑𝑥𝐻𝑣
𝑑(𝑥, 𝑡)

1

0
= 𝐹1

𝑝(𝑡) + 2𝐹1
𝑛(𝑡),                                    (10) 

∫ 𝑑𝑥𝐻𝑣
𝑢(𝑥, 𝑡)

1

0
= 2𝐹1

𝑝(𝑡) + 𝐹1
𝑛(𝑡), 

∫ 𝑑𝑥𝐸𝑣
𝑑(𝑥, 𝑡)

1

0
= 𝐹2

𝑝(𝑡) + 2𝐹2
𝑛(𝑡), 

∫ 𝑑𝑥𝐸𝑣
𝑢(𝑥, 𝑡)

1

0
= 2𝐹2

𝑝(𝑡) + 𝐹2
𝑛(𝑡). 

For the non-forward parton densities are defined as  
 

    𝐻𝑣
𝑞(𝑥, 𝑡) = 𝐻𝑞(𝑥, 0, 𝑡) + 𝐻𝑞 (−𝑥, 0, 𝑡),                                (11) 
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𝐸𝑣
𝑞(𝑥, 𝑡) = 𝐸𝑞(𝑥, 0, 𝑡)  + 𝐸𝑞 (−𝑥, 0, 𝑡). 

We can write GPDs using the integral form of the bulk-to-boundary propagator 
(Eq. 8) and Eq. (10):  

𝐻𝑣
𝑢(𝑥, 𝑡) = 𝑘6 ∫

𝑑𝑧

(1−𝑥)2
𝑥𝑎𝑒−

𝑘2𝑧2𝑥

1−𝑥 𝑧5 [(𝑘2𝑧2 + 2) + 𝜂𝑢(𝑘2𝑧2 − 2)(1 −
𝑘2𝑧2𝑥

1−𝑥
)], (12) 

𝐻𝑣
𝑑(𝑥, 𝑡) = 𝑘6 ∫

𝑑𝑧

(1−𝑥)2
𝑥𝑎𝑒−

𝑘2𝑧2𝑥

1−𝑥 𝑧5 [
1

2
(𝑘2𝑧2 + 2) + 𝜂𝑑(𝑘2𝑧2 − 2)(1 −

𝑘2𝑧2𝑥

1−𝑥
)], 

𝐸𝑣
𝑢(𝑥, 𝑡) = 2√2𝑚𝑘7 ∫

𝑑𝑧

(1−𝑥)2
𝑥𝑎𝑒−

𝑘2𝑧2𝑥

1−𝑥 𝑧7𝜂𝑢, 

𝐸𝑣
𝑑(𝑥, 𝑡) = 2√2𝑚𝑘7 ∫

𝑑𝑧

(1−𝑥)2
𝑥𝑎𝑒−

𝑘2𝑧2𝑥

1−𝑥 𝑧7𝜂𝑑, 

where 𝜂𝑢 = 2𝜂𝑝 + 𝜂𝑛 and 𝜂𝑑 = 𝜂𝑝 + 2𝜂𝑛. 

4. Longitudinal momentum densities 

Another interesting aspect to consider is the nucleon GPDs in impact space. GPDs 
in the impact space provide access to the distribution of partons in the transverse 
plane, which is crucial for understanding nucleon structure. The quark transverse 
charge densities in a nucleon can be defined as [31, 32]: 

𝜌(𝑏⊥) = ∫
𝑑2𝑞⊥

(2𝜋)2
𝑒𝑖𝑏⊥𝑞⊥

1

2𝑃+ ⟨𝑃+,
�⃗� ⊥

2
, 𝜆|𝐽+(0)|𝑃+, −

�⃗� ⊥

2
, 𝜆⟩,                 (13) 

where the 2-dimensional vector represents the position (in the 𝑥𝑦-plane) from the 

 

Fig. 1. Generalized parton distributions in the soft-wall model. 
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transverse c.m. of the nucleon, and 𝜆 = ± 1 /2 represent the nucleon (light-front) 
helicity. To determine 𝜌(𝑏), we use Eq. (12) using GPD form factors.  Then 𝜌(𝑏) can 
be expressed as a simple integral of known functions: 
 

𝜌(𝑏⊥) = ∫
𝑑2𝑞⊥

(2𝜋)2
∞

0
𝐻𝑞(𝑥, 𝑞⊥)𝑒−𝑖𝑏⊥𝑞⊥ = ∫

𝑑𝑄

2𝜋

∞

0
𝑄𝐽0(𝑄𝑏)𝐻𝑞(𝑥, 𝑄),           (14) 

 
where 𝑏 = 𝑏⊥ is the impact parameter, 𝑄2 = 𝑞⊥

2,  𝐽0 denotes the cylindrical Bessel 
function of order 0. Due to the isospin symmetry, the momentum density is the 
same for both proton and neutron. Non-polarized intensities are axisymmetric and 
the peak is at the centre of the nucleon (𝑏 = 0). For the nucleon polarized along 

the 𝑥 direction, the densities no longer have symmetry and the peak of the 
intensities is shifted in the positive 𝑦 direction for u quark and in the opposite 
direction for the d quark. 
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