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Abstract 

In this paper, we consider the nonlinear Sturm-Liouville problem with indefinite 

weight function and spectral parameter in the boundary condition. We show the existence 

of four families of continua of solutions corresponding to the usual nodal properties and 

branching from intervals of the line of trivial solutions and from intervals of }.{R  
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1. Introduction 

We consider the following nonlinear eigenvalue problem  
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),1()1()1()(
111

ypdyba               (3) 

where R  is a parameter, p is a positive and continuously differentiable 

function on ],1,0[  q  is a nonnegative continuous function on ],1,0[  r  is a sign-

chaning continuous function on ],1,0[  11100
,,,, dbadb  are real constants such 

that ,0||||
00
 db ,0

00
db and if ,0

0
b  then q is not identically zero, and 

.0,0
1111
 dbda  The nonlinear term f  is a continuous function on 3]1,0[ R  

satisfying the following conditions:  

,0),,,( suxfu ;,),(],1,0[ 2 RRsux       (4) 

there exist a positive number ,M  a positive sufficiently small number 0
c  and a 

positive sufficiently large number 1
c such that 

.,||||,||||

,0,),(],1,0[,
,,,(

10

2

Rcsucsu

uRsuxM
u

suxf









    (5) 

Bifurcation of solutions to nonlinear Sturm-Liouville problems with 

indefinite weight arise in the study of various problems in mechanics, physics, 

biology, ecology and other areas of natural science (see [12, 13, 18, 19] and its 

bibliography). Note that problem (1)-(3) with 0
1
a arises when modeling the 

selection-migration process in population genetics (see [12, 13]).  

For nonlinear Sturm-Liouville problems of second and fourth orders with 

definite weight, the bifurcation of solutions from zero and infinity has been 

studied in detail since the 70s of the last century in the works of J.F. Toland [25], 

C.A. Stuart [24], P.H. Rabinowitz [21, 22], H. Berestycki [9], B.P. Rynne [23], Z.S. 

Aliyev [1], Z.S. Aliyev and N.A. Mustafayeva [7], R. Ma and G. Dai [20] and others. 

In the case of bifurcation from zero, they in the works [1, 2, 9, 20, 21, 23] proved 

the existence of two families of unbounded continua, branching from points and 

intervals of a line of trivial solutions and contained in classes of functions that 

have the usual nodal properties. In the case of bifurcation from infinity, works [7, 

20, 22-25] show the existence of two families of global continua bifurcating from 

points and intervals of the line }{R  and contained in classes of functions 

which have the usual nodal properties in the neighborhood of these points and 

intervals. Note that in the works [2, 5, 6, 10] these results were also established 
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for nonlinear Sturm-Liouville problems of second and fourth orders with a definite 

weight function and a spectral parameter in the boundary condition. The global 

bifurcation from zero and infinity of solutions to nonlinear Sturm-Liouville 

problems of second and fourth orders with indefinite weight functions has been 

intensively studied recently in [3, 4, 8, 9]. In these works, the authors show the 

existence of four families of global continua of solutions that have the above 

properties. 

The purpose of this paper is to simultaneously study the behavior and 

structure of global continua of solutions to problem (1)-(3) branching from zero 

and infinity. 

2. Preliminary 

We consider the following linear eigenvalue problem  















)1()1()1()(

),0()0()0(

),1,0(,)()(

111

00

ypdyba

ypdyb

xyxry





    (6) 

which obtained from (1)-(3) by setting .0f  By [11, Theorem 3.2] the 

eigenvalues of the linear spectral problem (6) are real, simple and form two 

infinitely increasing and infinitely decreasing sequences 

......0
21

 

k
 and ,......0

21
 

k
  

respectively. Moreover, for each k  the eigenfunctions )(xy
k

  and )(xy
k

  

corresponding to the eigenvalues 

k
 and ,

k
 respectively, have exactly 1k

simple zeros in the interval ).1,0(  

As is known, the oscillatory properties of eigenfunctions of linear problems 

play an important role in the study of global bifurcation of solutions to nonlinear 

eigenvalue problems. According to this, we present some important classes of 

functions constructed in the papers [15-17].  

By 0
.).( cb  and .).( cb  we denote the sets of functions satisfying the 

boundary conditions (2) and (3), respectively. 

Let 
0

1 .).(]1,0[ cbCE   be the Banach space with the usual norm 

,||||||||||||
1 

 uuu  



Ulkar Gurbanova / Journal of Mathematics & Computer Sciences v. 1 (1) (2024)  

55 

 

where .|)(|max||||
]1,0[

xuu
x


  

From now on   and  will denote either   or  ;   and   will denote 

the opposite sign to   and .  

For each fixed ,R each ,k  each   and each   let 



,

,k
S be the set of 

functions Eu  which satisfy the following conditions:  

(i) ;.).( cbu  

(ii) the function )(xu  has exactly 1k  simple zeros in the interval );1,0(  

 (iii) ;0)1()()( 2

1

1
1

0

2 








 u
d

a
dxxuxr  

(iv) the function )(xu  is positive in a deleted neighbourhood of the point 

.0x  

Remark 1. It follows from the definition of the sets ,,,

,
kS

k



 ,R  that 

these sets are open in .E  Moreover, if ,,

,



k
Su  then either  

 (i) there exists ]1,0[  such that ,0)()(   uu  or 

 (ii)
 

.0)1()()( 2

1

1
1

0

2  u
d

a
dxxuxr

 

For each ,k  each   and each   we define the set  ,

k
S

 
by 

.,

,

, 
R

kk
SS












 

Note that for each ,k  each   and each   the set  ,

k
S

 
is open in .E  

Moreover, if ,,

k
Su  then by Remark 1 either (i) there exists ]1,0[  such that 

,0)()(   uu  or (ii) .0)1()()( 2

1

1
1

0

2  u
d

a
dxxuxr  

Lemma 1. If ),( y  is a nontrivial solution of problem (1)-(3) such that 

,,

k
Sy 

 
then .0y  

Proof. Let ),( y be a nontrivial solution of problem (1)-(3) such that 

.,

k
Sy   Then either (i) there exists ]1,0[  such that ,0)()(   yy  or (ii) 

.0)1()()( 2

1

1
1

0

2  y
d

a
dxxyxr  
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Multiplying both sides of equation (1) by ,y  integrating the resulting 

relation in the range from 0 to ,1  applying the formula of integration by parts and 

taking into account the boundary conditions (2) and (3) we obtain 

 

,)),(),(,()()1()()(

][)()()()(

1

0

2

1

1
1

0

2

1

0

22

















dxxyxyxfxyy
d

a
dxxyxr

yNdxxyxqxyxp



   (7) 

where  

0

0][
d

b
yN   for ,0

0
d 0][ yN  for .0

0
d    (8) 

 If ,0)1()()( 2

1

1
1

0

2  y
d

a
dxxyxr  then it follows from (7) that  

  .)),(),(,()(][)()()()(
1

0

1

0

22

  dxxyxyxfxyyNdxxyxqxyxp    (9) 

By (8), the left-hand side of (9) is positive, and by (4), the right-hand side of (9) is 

non-positive, which leads to a contradiction. 

If there exists ]1,0[  such that ,0)()(   uu then the proof of this 

lemma is similar to that of [20, Lemma 2.2]. The proof of Lemma 2.2 is complete. 

3. Operator interpretation of problem (1)-(3) and some necessary results 

 Let CLH  )1,0(
2  be a Hilbert space with the scalar product  

,||)()()ˆ,ˆ( 1

1

1

0

smadxxxyy     

where  

,ˆ H
m

y
y 








  .ˆ H

s











  

We define in the space H  an operator  









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with the domain 
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which is dense everywhere in .H  Moreover, we define the operators HHB :

and HADRF  )(: as follows: 

,ˆ 


















m

ry

m

y
ByB   

.
0

),,,(
,)ˆ,( 







 




























yyxf

m

y
FyF  

It is obvious that operators BA,  and F  are well defined. Direct verification 

shows that problem (1)-(3) is equivalent to the following nonlinear eigenvalue 

problem 

).(),ˆ,(ˆˆ ADyyFyByA       (7) 

Since 0
11
da  and 0

1
b  it follows from [16, Lemma 2.1] that A  is a self-

adjoint positive definite operator on ).(AD  Consequently, the smallest 

eigenvalue 1
  of this operator is positive. 

We introduce the following notations: 

],,[  
kkkk

dI   ],,[  
kkkk

dI   ,k  

where  

,
1




  k

k

M
d .

1




  k

k

M
d  

By the condition (5) there exist a positive number M  and a positive 

sufficiently small number 0
c  such that 

.|,||||

,0,),(],1,0[,
,,,(

0

2

Rcsu

uRsuxM
u

suxf









   (51) 

Remark 2. Since conditions (4) and (51) are satisfied, it follows from 

Corollary 3.1 of [15] that for each ,k  each   and each   the set of 

bifurcation points of problem (1)-(3) with respect to the set  ,

k
SR

 
is nonempty. 
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Moreover, if )0,(  is a bifurcation point of the nonlinear eigenvalue problem (1)-

(3) with respect to the set  ,

k
SR , then .

k
I  

Let D  the set of nontrivial solutions of problem (1)-(3). 

For each ,k  each   and each   let  ,

k
D  be the union of all the 

components 



,

,k
D  of the closure of the set ,D  branching from bifurcation points 

}0{)0,(  
k

I  with respect to the set  ,

k
SR . By Remark 2 the set  ,~

kD is 

nonempty. Let }).0{(
~ ,,  

kkk IDD   Then the set  ,~
kD  is connected in 

,ER  but the set  ,

k
D may not be connected in .ER  

Theorem 1 [2, Theorem 3.2]. For each ,k  each   and each   the set 
 ,

k
D  is unbounded in ER  and contained in .,

k
SR   

By the condition (5) there exist a positive number M  and a positive 

sufficiently large number 
1

c  such that 

.,||||,0,),(],1,0[,
,,,(

1

2 RcsuuRsuxM
u

suxf
 


     (52) 

Remark 3. Since conditions (4) and (52) are satisfied, using operator 

interpretation (7) of problem (1)-(3) by following the arguments in [17] and in 

Section 5 of [7] we can show that for each ,k  each   and each   the set of 

asymptotic bifurcation points of problem (1)-(3) with respect to the set  ,

k
SR 

is nonempty. Moreover, if ),(   is a asymptotic bifurcation point of problem (1) 

– (3) with respect to the set  ,

k
SR  , then .

k
I  

For each ,k  each   and each   let  ,ˆ
kD  be the union of all the 

components 



,

,

~
k

D  of the set ,D  branching from asymptotic bifurcation points 

}{),(  
k

I  with respect to the set  ,

k
SR   (Adding the points ),(   to 

ER   and defining an appropriate topology on the resulting set, we obtain that 

),(   is an element of ER  ). Let }).{(ˆ
~
ˆ ,,  

kkk
IDD   Then the set  ,

~
ˆ

k
D  

is connected in ,ER  but the set  ,ˆ
kD may not be connected in .ER  

By following the arguments in Theorem 5.9 of [7] we can prove the 

following theorem. 
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Theorem 2. For each ,k  each   and each   the set  ,ˆ
kD  is nonempty 

and at least one of the following holds:  

 (i)  ,ˆ
kD  meets }{



k
I with respect to  

 ,

k
SR  for some 

);,(),(  kk   

 (ii)  ,ˆ
kD  meets )0,( for some ;R  

 (iii) the natural projection )ˆ( ,

kR DP  of  ,ˆ
kD  onto }0{R  is unbounded. 

In addition, if the union  ,, ˆˆˆ 

kkk DDD   does not satisfy (ii) or (iii), then it must 

satisfy (i) with .kk   

4. Global bifurcation from zero and infinity of nontrivial solutions  

of problem (1)-(3) 

Theorem 3. For each ,k  each   and each   the following relation 

holds: ,ˆ ,, 

kk SRD   and consequently, alternative (i) of Theorem 2 cannot 

hold. Moreover, if the set  ,

k
D  meets ),(  for some ,R  then ,

k
I  and 

if the set  ,ˆ
kD  meets )0,( for some ,R  then .

k
I   

Proof. By Lemma 1 we have .)( ,  

k
SRD  Then it follows that the 

sets )( ,

k
SRD  and )(\ ,

k
SRD   are mutually separated in ER   (see [26, 

Definition 26.4]. Thus, according to [26, Corollary 26.6], any connected 

component of the set D  must be a subset of either the set )( ,

k
SRD  or the 

set ).(\ ,

k
SRD   Since  ,ˆ

kD  is the union of all components of the set D  which 

intersect the set ,,

k
SR  each of these components must be a subset of the set 

,,

k
SR and consequently, .ˆ ,, 

kk SRD   

 Let the set  ,

k
D  meets ),(  for some .R  It is obvious that . R  

Since  ,,

kk
SRD   it follows that ),(  is an asymptotic bifurcation point 

of problem (1)-(3) with respect to the set .,

k
SR   Then by Remark 3 we get 

.
k

I  
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Now let the set  ,ˆ
kD  meets )0,( for some .R  Obviously, . R  By 

Theorem 1 we have ,,, 

kk
SRD   and consequently, )0,( is a bifurcation 

point of problem (1)-(3) with respect to the set .,

k
SR   Then it follows from 

Remark 2 that .
k

I  The proof of this theorem is complete. 

Corollary 1. If for some k  alternative (iii) of Theorem 2 does not hold, 

then  

.ˆ ,, 

kk DD   

Remark 4. If alternative (ii) of Theorem 2 does not hold, then the question 

naturally arises whether the set  ,

k
D intersects the set .ˆ ,

kD  By following the 

arguments in Example 4.1 of [7] we can show that both cases are possible for 

these sets. 
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