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Abstract 

The Riesz transform has been well studied on classical Lebesgue, Morrey, Sobolev, 

Besov, Campanato, etc. spaces. But its discrete version has not been well studied. In this 

paper, we find a necessary condition and a sufficient condition for the summability of the 

discrete Riesz transform. 
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1. Introduction 

 The j -th Riesz transform of the function  d

p RLf  ,  p1  is 

defined as the following singular integral: 
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1 dtetz tz  is Euler’s Gamma function. 

It is well known (see [9, 13, 17, 18]) that the Riesz transform plays an 

important role in the theory of harmonic functions. The boundary values of 

harmonically conjugate in the upper half space functions are 

interconnected by the Riesz transform. 

From the theory of singular integrals (see [17]) it is well known that the 

Riesz transform is a bounded operator in the space   d

p RL , 1p , that is, 

if  d

p RLf  , then    d

pj RLfR   and the inequality  

pp
LpLj fCfR                                                         (1) 

holds. In the case  dRLf 1  only the weak inequality holds: 

   
1

1:
Lj

d f
C

xfRRxm


  ,                                      (2) 

where m  stands for the Lebesgue measure, pC , 
1C  are constants 

independent of f . From the inequalities (1), (2) it follows that the Riesz 

transform of the function  dRLf 1  satisfies the condition 

      1: oxfRRxm j

d  ,    . 

Note that the Riesz transform of a function  dRLf 1  is generally not 

Lebesgue integrable. In [7], using the notion A -integrability of functions, 

an analogue of the Riesz equation for the Riesz transform of functions from 

the class  dRL1  was proved. In [10-12, 14-17], the boundedness of the 

Riesz transform in the functional spaces of Sobolev, Besov, Orlicz, 
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Companato, Morrey, etc. was studied. But the discrete analogue of the 

Riesz transform has not been fully studied. In this paper, we find a 

necessary condition and a sufficient condition for the summability of the 

discrete Riesz transform. 

2. Discret Riesz transform and its properties 

Denote by  d

pp Zll : , 1p , the class of sequences   dZmmhh


 , 

satisfying the 

condition 
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where   diZmmmmZ ik

d ,1,:,...,: 1   and Z  is the set of integers. 

Let   pZmm lhh d 


, 1p . Namely, the sequence     
dZnnjj hRhR




~~
 is 

called the Riesz transform of the sequence h , where 
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Note that if plh ,  p1 , then it follows from the Holder inequality  

that the series 
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1
 absolutely converges, and therefore 

the Riesz transform of the sequence h  exists. 

Let's note some properties of the discrete Riesz transform, obtained in 

the work [1]. 

Тheorem 1 [1]. Let  p1 . For any plh  we have pj lhR 
~

, and 

there exist 0pc  such that 

pp
lp

l
j hchR 

~
. 
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Тheorem 2 [1]. There exist 01 c  such that for any 1lh  and for any 

0  the distribution function 
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of the Riesz transform of the sequence h  satisfies the inequality 

  
1
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lj h

c
hR


  . 

Тheorem 3 [1]. Let 
1lh . Then the equation 
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holds, where 
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2

1d
 is integer part of a number 

2

1d
. 

In addition, we note that the boundedness of the discrete Hilbert, 

discrete Ahlfors-Beurling and discrete Riesz transforms on discrete Morrey 

spaces was studied in [2, 4, 5, 8]. 

 

3. A necessary condition and a sufficient condition for the summability 

of the discrete Riesz transform 

Theorem 4. Let 
1lh . Then to include 1

~
lhR j  , it is necessary that the 

equation 

0
 dZn

nh                                                          (3) 

holds. 

Proof. In first we prove that if the sequence   1lbb dZnn 


, then the 
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distribution function      n

d bZnb :  of the sequence b  satisfies 

the condition 

    1ob  ,   0 .                                       (4) 

It follows from the inequality 
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Hence, taking into the decreasing of the function  b , we obtain (4). 

It follows from (4) that, if 1

~
lhR j  , then 

     1
~

ohR j  ,  0 , 

and, therefore, by Theorem 3, we obtain that the equation (4) holds. The 

proof of the theorem 4 is complete. 

Theorem 5. If the sequence 
1lh  satisfies the conditions  

i) 0
 dZn

nh ; 

ii)   
 dZm

m meh ln , 

then 1

~
lhR j   and the inequality 

   


 
dZm

m

d

l
j mehdhR ln25

~ 13

1

                                 (5) 

holds. 
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Proof. From the definition of the discrete Riesz transform it follows that 
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From the condition i) for 0n  we have 
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It follows from inequalities (6) and (7) that 
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where 
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Estimate the summands  i
mJ , 0m , 2,1i .  Define    14log2  mk

, where   m4log2  is the integer part of the number  m4log 2 , we have 
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From this and from (8), (9) we obtain (5). The proof of the theorem 5 is 

complete. 

Note that for the discrete Hilbert and the discrete Ahlfors - Beurling 
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transform, analogues of Theorem 4 and Theorem 5 are proved in [3, 6]. 
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