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Abstract 

In this paper is proved the law of large numbers for the Markov random walks, 
discribed by the first-order autoregressive process (AR(1)). 

Keywords:  Markov random walk, first-order autoregressive process, the law of lage numbers. 

Mathematics Subject Classification (2010): 62M10, 60F15  

1. Introduction 

It is known that the first-order autoregressive process (AR(1)) is 
determined by the solution of a recurrent equation of the form 

nnn XX   1                                                                                    (1) 

where   ,,1 Rn   is some fixed number and the innovation  n  is 

the sequence of independent identically distributed random variables with 

finite variance  1
2  D  and with mean 1Ea  . It is assumed that the 

initial value of the process 0X  is independent on the innovation  n .  

The process AR(1) plays a great role in theoretical and applied terms in 
the theory of Markov random walks ([1]- [10]). 

The following Markov random walks are described by means of the 
process AR(1) 
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These Markov random walks have been considered in the some problems of 

theory of nonlinear renewal theory and of sequential analysis ([1]- [10]) .  

The limits theorems for the Markov random nnn
DC ,,

 
and  n

Z  are proved in 

the case 0a in works [1], [2], [4].  

In the present paper, we prove the law of large numbers for the mentioned 

Markov random walks in general case when  .,
1

 REa   

Note that in many problems of theory of Markov random walks described by the 
process AR(1), the case 0a  is more complicated compared in case 0a . As noted 

in the works [8, 9] the case 0a has been studied much less. A number of statistical 

problems for the model (1.1), in the case 0a  were studied in [6] and [7].  

We have 

Theorem.  Let 1,2

0
 EX , and 

1

2  D . Then as n  the 

following convergences in probability are satisfied:  
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Proof.  Let us prove statement 1). From (1) we find  
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Hence, taking into account  
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from (2) we have  
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(3) 

By Markov inequality it follows from 
0

XE  that 

 00
P
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X
  as .n

                                                                               
 (4)  

Prove that  
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(5)  

By sequential iterations it is easy to obtain from (1) the following representation 

for 
n

X  







1

0
0

n

k
kn

kn

n
XX 

 
.

                                                                           
 (6)  

From (6) by virtue of 
1
Eb

 
we obtain  
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(5) follows from (7).  

By the stroung low of large numbers, for random variables 
n

  we have  
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(8) 

Thus, from (3), (4), (5) and (8) we have  
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To prove the statement 2), at first we prove that  
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(9)  

 
 
To prove (9), it suffius to show  
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By virtue of independence of random variables  
k



 
and ,1, kmX
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We now prove that for ruther large n   
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From the representation (6) we can obtain  
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Furthermore,  
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From (13) and (14) it follows that  
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Consequently (12) follows from (15).  
(10) follows from (11) and (12). 
Thus, the convergence of (9) is proved.  

Now, by virtue of the equality  
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and from (9) and statement 1) we obtain statement 2) of Theorem 1. 
Let us prove statement 3). From (1) we have  
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Hence we obtain  
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It is clear that that  
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and from estimate (7) we have  
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Then, by virtue of the statement 2).  

By the strong law of large numbers for random variables  2
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This implies statement 3) of the theorem. 
To prove statement 4). We have  
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Hence, from statement 2) and 1) we obtain  
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Thus, the theorem is proved.  
The following corollary follows from this theorem.  

Corollary 2.1.  Let the conditions of the theorem are satisfied, and 0a ,  then  
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Corollary 2.2. Under the conditions of the theorem, we have  
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The statement of corollary 2.2 follows directly from statements 3) and 4) of the 
theorem. The statements of corollary 2.3 follows by virtue of the equality  

n
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from statements 1), 3) and 4) of the theorem. 

In corollary 2.2 
n

  is the least-squares estimator by the results of observations 

n
XXXX ,...,,,

210 , and the case of 0a  we have nn
  .  

The authors express sincere gratitude to the reviewer for a number of useful 
comments that help improve the presentation of the work. 
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