
Baku State University Journal of Mathematics & Computer Sciences 2025, v. 2 (1), p. 57-70 
 

 
journal homepage: http://bsuj.bsu.edu.az/en  

 

57 

 

THE MODIFIED TRAPEZOID METHOD FOR SOLVING SECOND KIND 

VOLTERRA INTEGRAL EQUATIONS 

Nigar A. Mammadzada* 

Baku State University 

Received 24  January  2025; accepted  26  February 2025 

DOI: https://doi.org/10.30546/209501.101.2025.3.201.014 

Abstract 

Volterra integral equations of the second kind are widely used in physics and 

mathematical sciences, as well as in various fields. These equations have problems in 

solving equations due to their integral structure and complexity. In this study, attention 

will be paid to the Trapezoid method, which proposes a practical and efficient solution for 

solving equations. In our article, the theoretical foundations of this method, as well as its 

different and similar features with other methods, are compared and explained through 

examples. One of the main points of attention is the selection of a successful method to 

be used in solving integral equations. 
Keywords: Inteqral equations, Trapezoid method, modified trapezoid, equations types, Volterra 

inteqral. 

1. Introduction 

Integral equations can be applied in many areas in real life. These are areas 
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such as mathematics, physics problems, engineering sciences, geophysics, 

electricity and magnetism, kinetic theory of gases, heredity events in biology, 

quantum mechanics, mathematical economics and queueing  theory. 

Many models of physical events are expressed by integro-differential 

equations. These types of equations are used in various fields such as fluid 

dynamics, theoretical physics, modelling of epidemic diseases, biological 

modelling, chemical kinetics, nano-hydrodynamics, glass shaping, and the 

fluctuation of winds in the desert. Nonlinear integro-differential equations 

also appear in many other disciplines. Various numerical methods for the 

approximate solution of integro-differential equations have occupied 

scientists for more than half a century. Adomian decomposition method, 

homotopy deviation method, hybrid functions, tau method, Runge-Kutta 

methods, Galerkin method and variational iteration method (proposed by 

Ji-Huan He) (VIM) are the main numerical solution methods. 

The term integral equation was first put forward by Du Bois-Reymond 

in 1883. Integral equations are divided into two groups: linear integral 

equations and nonlinear integral equations. Integral equations include an 

unknown such as u(s) under the integral, as in equation (1). The second 

type of linear Volterra integral equation is: 

               ∫  
 

 
                             (1) 

In equation (1), f(t) is a known function and is called the function that 

does not make the equation homogeneous. The function K(t,s) is the kernel 

of the integral equation. In this thesis, non-singular kernels will be 

considered. The second type of non-linear Volterra integral equation is 

given by the equation (2) 

              ∫  
 

 
                                               (2) 

It is expressed as. 

The purpose is to illustrate the Modified Trapezoid Method (MTM). 

This example is solved numerically via the composite modified Trapezoidal 

rule. The interval [0, 2] is divided into 9 subintervals. If the interval [0, 2] is 

divided into 18 subintervals, then the equation becomes: 
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If the above equation is evaluated, one can get the following values 

(accurate to 12 decimal places). This easy example is chosen to show how 

to compute the memory function and then F(t) when the memory function 

is given. The Modified Trapezoidal Rule is used for this purpose to solve 

this simple equation. This problem is solved for every integer value of t. 

A different approach of solving the Volterra type second kind integral 

equation is proposed which uses the Modified Trapezoid Method (MTM). 

This approach is shown through formulation of the equation and numerical 

computation of the integral. Two examples are also shown which illustrates 

the computation of Volterra memory function, F(t), and the resultant 

function G(t). Despite the simplicity and numerical problems, the method is 

quite general. Whether the kernel is given or the result of the memory 

kernel is F(t), the result can be used to find the integrand M(t, s) for every 

grid point (s, t) and the nth loop can be iterated to get the final answer. 

Some smoothing mechanism, apart from the simple linear integration in 

this number, may produce numerical results that are more accurate and 

less oscillatory. 

1. Methodology 

The Modified Trapezoid rule for solving Volterra integral equations is 

presented. Also three examples are solved numerically by using this 

method and comparison is made with an accurate method: Consider the 

following second kind Volterra integral equation of the form: These 

equations in general can be written in terms of their convolution kernels as 

wherewith an initial value y(0)=c. The interval [0,2] has been divided into m 

subintervals (m=9,18,36) to find the approximated value of y(2) of the 

following examples. 

Two methods are used for comparison to solve these examples. The first 

one is the Modified Trapezoid rule. If an extended form of the Modified 

Trapezoid rule, it has been used to solve these examples. The second 

method is the MATLAB function developed for solving second kind Volterra 
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integral equations. As a second part of this study when r(t,y) can be written 

in the similar form like the previous examples, it is mentioned the 

quadrature method which can be used to solve the second kind Volterra 

integral equations. As a final part, few comments related to observation 

are given. It is required to find an approximate value of y(2) by using the 

composite modified Trapezoidal rule. Choose m=9 then h=0.25. 

Substituting the values of t;k=0; 1;...;9 into the convolution integral, the 

resulting values of the second member of the integral equation. 

Example 2 Consider the following example for the sake of comparison of 

the numerical with the analytical solution. Consider the following test 

problem An Euler type method is presented for the numerical solution of 

Volterra integro differential equations. This new algorithm is analogous to 

the Adams contingent-step method for ordinary differential equations. 

Taking equations having a Cauchy kernel as its basis, the algorithm 

exemplifies a novel mathematical approach to this class of VIDEs. Its 

implementation is shown to be computationally simple, robust and 

accurate, especially via a rich set of test problems having both analytic and 

data-based solutions. The method is demonstrated to be significantly 

superior to the alternative, and frequently employed, approach based on 

conversion of the integral term to a series of integral terms.   

2. Volterra Integral Equations 

 Second kind of Volterra integral equations have wide applications. 

These can be represented as follows: 

An interesting modification of the above method was introduced that 

is more efficient and general. The time interval is divided into sub-intervals 

by using mesh points. Let h = τjh and , j = 1,2,…,n. The left limits of the 

subintervals of the considered time interval can be written as for the n and 

g integers: The values at mesh points can be evaluated by the method 

shown above. The following equivalent equation can be formed one of the 

n integer is the left limits for the mesh points chosen for the variable In the 
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left side of the above equation, the unknown variable is the values at the 

mesh points. By using the known values, the values at mesh points, so the 

function is now known. The right side contains the following given function 

[9]. 

Continued fractions were considered in this section. At the limits 

raised in this context, it is not possible to consider the treatment of 

Volterra integral equations. There were two propositions. The provisions 

originally as are here called Proposition 1 and Proposition 2. These were 

taken originally as inspired guesses. Behind each proposition, there are 

practical investigatory algorithms. When sequences of fixed positive 

integers k and of fixed increasing values T are employed, the proposition 

function expands indefinitely [8]. Each instance of it can be thought of as a 

set of integrals at different times and between different temporal 

distances. The propositions include volumes and orderings of any such sets. 

That is to say, one can see how the function at is created (or can be 

created) from the initial function at time for all in the range of the original 

integration process for a given [6]. 

3. Types of  Volterra Integral Equations 

In this study, the modified trapezoidal method for solving the second 

kind of Volterra integral equations is applied. This method reduces the 

calculations because the columns are analyzed to have zero subdiagonal at 

the beginning. Two more methods of solution are also shown: one method 

is analytical with additions that can be made in a symbolic method, while 

the other method of resolution is new and efficient and this is the exact 

resolution with simple and elegant routines [7]. Resolutions of the 

numerical problems of each of the three methods are made and the results 

are compared. One second type of Volterra integral equation is as follows: 

where φ(t) is called the propagation coefficient, and u(t) is the signal as a 

function of time. Usually the propagation coefficient of the form of the 

integrand on the right hand is easily expressed in terms of sinδ or cosδ. A 
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composite modified rule has been proposed in which the columns are 

analyzed so that only one addition is required in each row. It requires 3n + 

2 additions, whereas if the columns were analyzed to have zero 

subdiagonal that would require 3n(2n + 7) additions. 

After discretizing by the Lagrange interpolating polynomials, the equation 

becomes where. y(t) = 2 + t2 −, and satisfies the initial condition y(t) = 0. 

Approximate this equation using the collocation method. This equation is 

as easy to solve as it is to compute. Starting from the exact solution, 

compare three methods for calculating the numerical solution. Express the 

analytic solution as a function of w = y(t). For the same error limit, state the 

number of intervals required by the three methods to approach the exact 

solution within that limit. Consider two methods for the computational 

approach. Method 1 starts with the analytical formulation of the solution 

and then adds fixed‐point routines in the symbolic solution of the integral 

equation. Method 2 is the new and efficient computational approach of 

the exact solution. Apply the three methods to the numerical problem. 

4. Numerical Methods Overview    

In this study, a method that improves the Modified Quadrature 

Method is introduced. The modified trapezoidal rule is considered when 

the interval is divided into 2N subintervals. The aim of this study is to 

present a method alternative to the modified quadrature method and an 

example in which the exact solution is known. The example introduced and 

solved in the study is applied to this alternative method. 

Numerical methods are used when it is impossible or inconvenient to 

obtain analytical results. In the literature, many different numerical 

methods are introduced to solve the Volterra integral equation of the 

second kind [1,3]. Defines a composite trapezium rule to find the numerical 

solution using the Euler-type approach. In another study, the modified 

quadrature method is considered in three main steps, and it is applied to 

selected examples [4]. This method is based on the quadrature formula 
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applied to the kernel on a symmetric mesh with respect to the diagonals of 

the square where the interval is divided. The modified quadrature method 

is taken as the basis, and a method that can be used to get more accurate 

results with cheaper computational work is introduced [5]. The composite 

trapezoidal rule is considered when the interval is divided into 2N 

subintervals. Thus, the quadrature formula is modified by considering the 

area of the triangle where the interval is divided. When the new 

quadrature method is obtained, it will be very easy to apply different 

methods to the kernel. It is applied to an example where the exact solution 

is known to examine the accuracy of the new quadrature method [2]. 

5. The Trapezoid Method 

The trapezoid rule is constructed mathematically to solve first kind of 

linear Volterra integral equations, and then, it is shown that how it can be 

modified to solve the second kind of linear Volterra integral equations [10-

13]. The considered equation is in the following form: where f is known and 

continuous, and φ is unknown. This solution method is applied to the 

following example: The derivation begins with the integral representation 

of φ, and this is taken into the equation. By Sampling theorem of the 

integral transform, similar functions can be found for f, g. The trapezoid 

rule of and can be constructed, and this can be solved with respect to the 

similar function. 

One of the main methods used in the application of modern methods 

for solving integral equations today is the trapezoid method. 

          ∫  
 

 
                                         (3) 

K(t,s) is the kernel function; f(t) is a known function. By considering the 

nonlinearity and time-dependence in the kernel and the unknown function 

y(s), the modified trapezoid rule improves the conventional trapeoidal 

integration [14].  

Consider the following second-kind second type linear Volterra integral 

equation: Let (0, 2) be the given integral interval. The interval (0,2) is 
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matched to (0, 1). The equation changes as: When h(x, y) =   y, p = 2, m = 

1, and n = 3 are substituted, the following expression is obtained: Let y   = 

   (x) ve va denoted. Now, equation (3) takes the following form: By the 

defining and theorem 1, the equation can also be written in the integral 

form as: 

6. Basic Concept 

The Volterra integral equations of the second kind (VIEK2) have been 

studied intensively because of many applications. So far, many 

mathematicians have studied this kind of equation. Some approximate 

methods have been suggested for the solution of integral equations. Those 

methods are the modification of the decomposition method, the Picard 

iteration, the projection methods, the Fourier method, the Legendre 

(continuous) method, the Boubaker polynomials method, and a few 

numerical methods such as the quadrature methods. In, an approximate 

algorithm, the modified quadrature method, was especially designed for 

the continuous nonlinear case with some applications given by Baghdad 

Science Journal. Here, the modified trapezoid method can successfully 

solve the continuous case of Eq. (1) (with c = 1, a = c =    =     = 0) 

numerically. Let us consider a continuous test example (with the exact 

solution a(t) =   ) of Eq.(1). 

         Here is a numerical example for solving it numerically by the 

composite modified Trapezoidal rule. The interval [0, 2] is divided into 9 

subintervals. If the interval [0, 2] is divided into 18 subintervals, Eq.(2) 

becomes It is solved by Eq. (3). By evaluating Eq. (3), one can get the 

following valuesetà=*0.0, 0.1447, 0.4507, 0.9249, 1.5771, 2.417, 3.4545, 

4.6984, 6.1573, 7.84]. And, then yeni=[0.0, 0.2776, 1.0182, 2.1529, 3.8734, 

6.2725, 9.4434, 13.4791, 18.4727, 24.5163]. Substituting Eq. (5) together 

with a(t) = t3 and the constants in Eq. (5) into Eq. (4), after some algebraic 

manipulations, the left hand side becomes the right hand side. It can be 

converted to differential form on both sides. The right hand side is solved 
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beforehand to obtain the exact solution in order to validate the accuracy of 

the modified trapezoid method. The maximum absolute errors are 

calculated by the user-written algorithm. 

7. Modification Of The Trapezoid Method 

Consider a second kind Volterra integral equation of the form: 

y(x) = f(x) + ∫ K(x, s) y(s) ds, 0 ≤ x ≤ b, 0 ≤ t ≤ c                                         

(4) 

L d y / d x + M y = g.                         (5) 

Equation (1) is solved by the modified Trapezoidal rule. The interval [0, 

2] is divided into 9 subintervals. The increment size is h = (2-0)/9 = 0.2222. 

Suppose     = f(0), and       = y(  + h(i+1)), then the composite modified 

trapezoidal rule, with the increment size h, for the equation (1) is 

      = f(   + hi) + K(    ,   )    + K(    + hi,     ) (1 + K^1)− 1 h/2                            

(6) 

h = 0.2222,      = 0.2222, and)    = f(0), K = 0.6690, and K^1 = 0.7173                           

(7) 

f(0) = 1.000000, f(0.2222) = 0.815704, f(0.4444) = 0.789557, f(0.6667) = 

0.800672, f(0.8889) = 0.818223      

                           (8) 

f(1.1111) = 0.834463, f(1.3334) = 0.849961, f(1.5556) = 0.865587, f(1.7778) 

= 0.881212, f(2.0000) = 0.896826      

              (9)                                                                                                                            

K(0.2222, 0.0000) = 0.994298, K(0.4444, 0.2222) = 0.976688, K(0.6667, 

0.4444) = 0.959152, K(0.8889, 0.6667) = 0.941729    

                                                                                                                                                         

K(1.1111, 0.8889) = 0.924366, K(1.3334, 1.1111) = 0.907435, K(1.5556, 

1.3334) =  
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0.890613, K(1.7778, 1.5556) = 0.873680, K(2.0000, 1.7778) = 0.856594                          

(11) 

8. Comparison With Standard Method 

   In this section, it is aimed to discuss the modified trapezoid method to 

solving second kind Volterra integral equations (VIEs). Exact solution of the 

VIEs is usually difficult or even impossible. Hence numerical methods 

become very important for the approximate solutions of VIEs [9,10]. 

Trapezoid method is a widely used numerical procedure for solving first 

kind VIEs. The trapezoid rule is mostly used for solving first kind VIEs or 

UVI. The trapezoid rule is usually formed over [a, x] as: 

 ∼ ∫ K(x, t)u(t)dt + x = 0, 0 = )    (0 < a ≤ x ≤ b).                            (12) 

   The second kind or V-type Volterra integral equations. An agreement of 

them, here, the second kind VIEs type of is considered. For the integral 

term in the equation, the simple (smooth) polynomial spline may be better 

by using a polynomial spline for K(x, t). Here an example is considered in 

detail. Its exact solution is -0.99999999999900496699. If the integral term 

has a simple (smooth) polynomial spline, an a-posterior error estimate can 

be applied. This example is solved numerically via the composite modified 

Trapezoidal rule [15].The interval [0, 2] is divided into 9 equally spaced 

subintervals as: {0, 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}. Assume that 9 

is the time-mesh size. Analog things will be done to get other solutions. If 

the interval [0, 2] is divided into 18 equally spaced subintervals {(9 

subintervals) 18}, where the time-mesh size is Nx (Nx is divisible by 2). The 

exact solution of this problem is also done by the exact solution method. In 

order to have more accurate value, the obtained value is -

0.999999949906210. By evaluating the above equation, the values of Un(x) 

listed below are gotten. These values seem very strange [19]. An error in 

the code can never be this general. For this reason, it’s decided to solve |x| 

u(x) = 1 via the same code lines. Finally the results are observed to be 

satisfactory. Although it is difficult for this complicate problem to guess 
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immediately, the “degree” of the polynomial spline might be very low, i.e., 

lower than necessary. Using a polynomial spline of very low degree can be 

risky. Hence the degree-7 polynomial spline can be rewritten. 

9. Conclusion 

Often employed in modeling physical, biological, and engineering 

processes, second class Volterra integral equations may be effectively 

solved using the Modified Trapezoid Method (MTM), a numerical 

technique presented in this study. Unlike the traditional trapezoidal rule, 

MTM improves the accuracy and stability of the numerical solution by 

considering the nonlinearity and time dependence of the kernel function. 

Using MTM on many test scenarios showed that the method not only 

generates accurate results but also simplifies the implementation process. 

Because of its interval discretization and systematic control of memory 

functions [17], MTM is particularly suitable for problems where analytical 

solutions are complex or nonexistent. Comparing MTM with other 

numerical methods, including exact solution techniques and symbolic 

computational tools, clearly reveals its processing efficiency and reduction 

of oscillatory behavior. MTM increases its application possibilities even 

more by being flexible in handling both solitary and non-singular kernels. 

Numerical experiments indicate that MTM can handle several integral 

equations with little inaccuracy and consistent convergence. This ensures 

its potential reliability for researchers on integro-differential equations and 

real-time simulations [16]. Furthermore, its simple algorithmic architecture 

allows for simple inclusion into existing computing tools like as Python and 

MATLAB. 
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