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Abstract

This paper is devoted to study the inverse boundary value problem for a third-order
partial differential equation with nonlocal boundary conditions, including integral
conditions. Using variable separation method and analytical methods is proved the
existence and uniqueness of the classical solution of the considered problem .
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1. Introduction

Let Dy ={(x,t):0<x<1,0<t<T} where T is a some positive constant. For the

equation
Ut (X, 1) + Uy (X, ) = at)u(x, t) + b(t)g(x, t) + f(x,t), (x,t) €D, (1)

consider the inverse problem with boundary conditions
T T
u(x,0) = @5 () + [ poMu(x,)dt, u (X, T) =y (X) + [ p(Hu(x,t)dt,
0 0
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T
Uyt (%,0) = @2 () + [ Po (u(x,)dt, 0<x <1, (2)
0
Neumann condition
u,(0,t)=0, 0<t<T, (3)
nonlocal integral condition
1
fuxtydx, 0<t<T, (4)
0

and with additional conditions
u(0,t) =h(t), 0<t<T, (5)
u@t)=h,(t), 0<t<T, (6)
where f(x,t), ¢;(X), p; (t),i=0,12, h;(t), i=12, are given functions and u(x,t), a(t)
and b(t) are the desired functions.

Condition (4) is a non-local integral condition of the first kind, that is, it does
not contain the values of the desired solution at the boundary points. Note that
problems of type (1)-(6) arise when studying various issues in natural science,
namely, when studying fluid filtration in porous media [2, 15], heat transfer in a
heterogeneous medium [7, 16], moisture transfer in soil [8, 11], propagation of
acoustic waves [13], questions of mathematical biology [12] and others.

Direct and inverse problems for partial differential equations with
nonclassical boundary conditions were studied in [1, 3-7, 9, 11, 15, 16] using
various methods. In this paper we use the Fourier method, analytical methods
and methods of functional analysis, we study the inverse problem for equation (1)
with boundary conditions (2), Neumann condition (3), nonlocal integral condition
(4) and additional conditions (5), (6).

We introduce the notation:

C23(Dy) =fu(x.1): u(x,t) C3(Dy ), Uy (x,1) €C(Dy )}
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By the classical solution of the inverse boundary value problem (1)-(6) we
mean a triple {u(xt), a(t),b()} of functions u(x,t)eC>3(D;), a(t)eC[0,T],
b(t) € C[0,T], satisfying equation (1) and conditions (2)-(6) in the usual sense.

2. Reduction of problem (1)-(6) to an auxiliary boundary value problem

To study problem (1)-(5), we first consider the following problem:

y"(t) =a®y(t), 0<t<T, (7)

T T T
y(0) = [ po®y®dt, y'(T) = [ p.®)Y®L y"(0) = [ p, ())y(®)dt, (8)
0 0 0

where a(t) e C[0,T], p;(t), i=0,1,2, are given functions and y=y(t) is the desired
function, where by the solution of problem (7), (8) we mean a function that is continuous
on together with all its derivatives included in equation (7), and satisfies conditions (7), (8)
in the usual sense.

Lemma 1 [3]. Let the following condition be satisfied:
1 1
(" pO (t)"C[O,T] + " pl (t)”C[O,T]T + E " p2 (t)"C[O,T]T 2 +§ "a(t)"C[O,T]T 2 j <1. (9)

Then problem (7) - (8) does not have a non-trivial solution.

Along with the inverse boundary value problem (1)-(6), we consider the following
auxiliary inverse boundary value problem: it is required to determine a triple
{u(x,t),a(t),b(t)} of functions u(x,t)eC>*(D;), a(t)eC[0,T], b(t)eC[0,T], satisfying

relations (1)-(3) and the following relations

u, (Lt)=0,0<t<T, (10)
hY () +U,, (0,1) = a(t)hy (t) + b(t)g(0,t) + f(0,t), 0<t<T, (11)
hy (1) +u,, (Lt) = a(t)h, (t) + b(t) gL t) + f (L), 0<t<T, (12)

where

h(t) = h, (t)g(L,t)—h,(t)g(0,t) 0, 0<t <T.
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Theorem 1. Llet ¢;(x)eC[0,1], p;(t)eC[0,T], i=012, h(t)eC3?0,T],

i=12, h(t)=hgLt)-h,(t)g(0,t)#0, 0<t<T, f(x,t)eC(D;), zf(x,t)dx=0,

1
0<t<T, g(x,t) eC(D;), fg(x,t)dx=0, 0<t<T, and the following conditions of
0
agreement are satisfied

1
[@i(0dx=0,i=012, (13)
0
T T
0(0) = hy (0) - [ po (N, ()AL, ¢1(0) = h{(T) - [ py ®)hy (),
0 0
T
¢,(0) = h{(0) - [ p, (), (B)dt, (14)
0
T T
2o(D) =h;(0) - [ po (DN, (©)dt, @1 (L) = hy (T) - [ py®h, (D),
0 0

.
9, (1) = h3(0) — [ p, (H)h, (t)dt . (15)
0

Then the following statements are true: (i) each classical solution of problem (1)-
(6) is also a solution of problem (1)-(3), (10) —(12); (ii) any solution to problem (1)-
(3), (10)-(12) that satisfies condition (9) is a solution to problem (1)-(6).

Proof. Let {u(xt),a(t),b(t)} be the solution of problem (1)-(6). Integrating

equation (1) with respect to X from O to 1, we have

d3 1
Fju(x,t)dx +U, (Lt)—u, (0,t) =
0

=a(t)}u(x,t)dx +b(t)J1' g(x,t)dx+ } f(x,t)dx, 0<t<T, (16)
0 0 0

1 1
whence, by conditions | f (x,t)dx=0, | g(x,t)dx=0, 0<t<T, and (4), implies (10).
0 0

Next, using h (t)eCS[O,T], i=12, and differentiating three times (5) and

(6), respectively, we get
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U (0, =h{ (), U (0, =h{(®), Uy (0. =h{(t), 0<t<T, (17)
U (0.) =hy (1), U@ 1) =h3 (1), U (0. =h3(t), 0<t<T, (18)
Substituting x=0and x =1 into equation (1), we obtain, respectively,
Upt (0,8) = Uy (0,) + a0 (0, 1) — B (L 1) =

—a()u(0,t) +b(t)g(0,t) + F(0,1), 0<t<T, (19)
Ugt (l: t) — Uy (l: t) + AUy (l’ t) - /Buxxtt (11 t) =
—atuLt) +b(t)g@Lt) + FLL), 0<t<T. (20)

From (19), taking into account (5), (17) and from (20), taking into account (6), (18),
it follows, respectively, that (11) and (12) are satisfied.

Now suppose that {u(x,t),a(t), b(t)} is a solution to problem (1)-(3), (10)-(12),
and (9) is satisfied. Then from (16), taking into account (3) and (10), we obtain

d3 1 1
ﬁju(x,t)dx —at)[u(x,)dx=0,0<t<T. (21)
0 0

1
By (2) and conditions qui (x)dx=0, i =0,1,2, we get
0

Jl‘u(x,O)dx—} Po (t)Uu(x,t)dedt = }(U(X,O) —T[ po(t)u(x,t)dtde =
0 0 0 0 0

1

[ @0 (x)dx =0,

0

1 T 1 1 T
Jue(xTydx—[ pl(t)(_[u(x,t)dedt = j(ut(x,T) -| po(t)u(x,t)dtjdx:
0 0 0 0 0 (22)

1
[ ()dx=0,
0

1 T 1 1 T
[ug (x,0)dx— | po(t){ | u(x,t)dedt = [un(x,O) [ po (t)u(x,t)dtde =
0 0 0

0 0

1

[@2(x)dx=0.

0
Since, by virtue of Lemma 1, problem (21), (22) has only a trivial solution,
1

then Ju(x,t)dx=0, i.e. conditions in (4) are satisfied.

0

Now, from (11), (19) and (12), (20) we get
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3

;’? U(0.t) — hy (1)) = a(t)(u(0,t) — hy (1)), O <t <T, (23)
3

c‘:? UL D) —h, () = a)ULt) —h, @), 0<t<T. (24)

By (2) and agreement conditions (14), (15), we have

T T
400~y (0) - [ PG, 1)~ by ())dt = u(0.0) - [ po (u(O, 1t -
0 0
-(h@-]p, OO =2, -(hO -, OhO |-
T T
U (0,T) = h{(T) — [ p(B)(u(0,1) - hy (1))dt = u (0, T) - [ py (t)u(0, t)dt -
0 0
T T
—[hl'(r) -] pl(t)hl(t)dtJ - ,(0) —(hl'(T)— | pl(t)hl(t)dtj ~0,
0 0
0, (0.0) ~ h(0) - [ p, (MO, - h, (©)dt = u, (0,0) ~ | p, (u(0,t)dt -
(KO- ]p.0nO%)=0.0-(NO-Tp.OROd )0, @9
T T
UO) ~hy (0) — [ Po((ULY) — hy B)dt = u(L.0) ~ | po (DU )dt -
0 0
T T
—(hz ©) - [ po(®)h, (t)dt] =0 (1) —[hz ©) - [ po(H)h, (t)dt] =0,
0 0
T T
U @ T)~hy(T) ~ [ PLOUE D~ hy @)dt = u, W T) — [ py (U Ot~
0 0
T T
—(hé(r) - pl(t)hz(t)dt] =) —(ha(T) - P (®)h, (t)dt] =0,
0 0
T T
U (L0) ~ N3 (0) — [ P, (DU — h, (D)dt = Uy (LO) - [ P, UVt~
0 0

T T
—(hS(O) [ P2, (t)dt} =0, () —[hz(O) - [ P2, (t)dtj =0. (26)
0 0

From (23), (25) and (24), (26), by virtue of Lemma 1, it follows that conditions (5)
and (6) are satisfied. The proof of this theorem is complete.
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3. Investigation of the existence and uniqueness of a classical solution to an
inverse boundary value problem

We will look for the first component u(x,t) of the solution {u(x,t),a(t),b(t)} of
problem (1)-(3), (10)-(12) in the form

u(x,t) = > u, () cosAx, (27)
k=0
where
A =kz, u () =m }u(x t)cos A, xdx, k=0,1,2 m =ik k=0,
« =K, ug(t)= ko ) k , k=012, ..., k_2,k22,

(see, for example, [10]). Then, applying the formal scheme of the Fourier method,
from (1), (2), we obtain
up (t)— A2u, (t) = F (t;u,a,b), 0<t<T, k=012, ..., (28)

0, (0) = g+ P (D, (DT, U} (T) = 2, + [ P, (Ou, (D
ur(0) =, +1p,®u, ®)dt, k=012, ..., (29)
where

Fe (t;u,a,b) = f, (t) +a(t)u, (t) +b(t)g, (), f ()= mk}f(x,t)coslkxdx,
0

1 1

9y (t) =My [ g(x, ) cos A xdx, gy =my [y (x)cosxdx, i,k =012, ... ..
0 0

Next, from (28) and (29) we find

T T
Uo (t) = @00 + [ Po (t)Uo(t)dtH((/’lo +| pl(t)uo<t)dt]+
0 0

T T
LT G _TJ((”Z +f pz(t)uo(t)dtJ+ [Go (t. )R, (z.u,a,b)d, (30)
0 0
-1

2
3.3 2
2237 < T
Uk (t) = eZ k + 2COS§AET {{on +J. po (t)uk (t)dt]x
0
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2 2 12 2
V3 i oz A3t — ARt V35 oz
x| cos| =23t — = || ' —2e 27 cos| = A3t+ = | [+
2 6 2 3

2 2

13 2 3.3 2
—Z 23t = 23T =
+e 2F co{gﬂifw%} e? +2003§1§T +

2
33 2
% T z 13 2
e2 23t ——A3t \/§ = T
T3 (%k +[p (t)Uk(t)dt] ekt —2e 2 Cos{7ll§t+§} +
3 0
A

+ii4[<o2k o O, (t)dt}x
J3 2 0

2 2 12 2
— _= 23t Z
x| sin —3/1,§T—£ e _2e 2 co EAEHE -
2 3 2 3

2 2

e B 5

e? sin—iét e? +2cos—/‘tk§T
T
+[Gy (L. 7)Fy (r,u,ab)dr, k=12,..., (31)
0
where
—(T-2)t, te]0,1],
Uy [0.7] a (tz7), 0<t<7r<T,
Gy (t,7)= t? +72 Gy (t7) =
~Tt+ > telr,T], Bctr), 0<z<t<T,

o, (t,7) and B (t,7), 0<z<t<T, are determined by the formulas presented on page
1651 in the paper [3].
After substituting the expression for uy(t) from (30), u, (t), k=12, ..., from

(31) into (27), to determine the component u (x,t) of the solution to problem (1)-
(3), (10)-(12), we obtain
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T T
U(X,t) = pgo + | Po(®)Ug )t +t] 1o + [ Py (DU (t)dt |+
0 0

N TG_T) [% +} pz(t)uo(t)dtJ+T[Go (t,7)Fy(r,u,a,b)dr +
0 0
-1

2
33 2
0 23T ol T
+z e2' X +2COS§Z,E’T {%k +.[ po(t)uk(t)dth
0
2 2 12 2
z —= 3t z
x| co —3/1|§t—£ e 26 2" ¢o —?’ﬂbft+Z +
2 6 2 3
t V3 2oa)| V3 3
co 7/1k3t+€ e? +Zcos7/1k3T

3,3
T

2 2
T 2 _E 3t g
+ [(alk +[p (t)uk(t)dtJ et _gg 2 co{§ﬂ§t+%J +
0

2
3
A

1 T
_4(§02k +I P, (Huy (t)dt) x
A3 0

L2
J3

R B V3

-e ? sin7ik§t e? +Zcos7lk§T +

+}Gk (t,2)F (z,u,a, b)dr}cosﬂk X. (32)
0

Now, from (11) and (12), taking into account (27), we obtain respectively:
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a(thy (t) +b(t)g(0,t)=h(t) - £ (0,1) - iﬂﬁuk (1),
k=1

a(t)h, (t) +b(t)g@ t)=h3 () - f(Lt)—i(—l)kﬂﬁuk(t).
k=1

Suppose that the inequality holds

h(t)=h,()g(L,t)-h,(t)g(0,t) %0, 0<t<T.

Then from (33) and (34) we obtain

at)=[h® ] {(h{) - FO.1) g @ t)-
~ 3 (9@t — (¥ g(0,1)) AZu (1)

k=1

b(t) =[h)] ™ {h. ) (g () - F L 1) -
- ki«—l)k hy (1) — hy (1)) 22U, () }
=1

Substituting the expressions uy (t).k=12,...,

respectively, we get

a(t)=[h)] {h® - f O, g t) -

) -1
3,37 2 T

{ezﬂk +2COS§AETJ {{%k +jp0(t)uk(t)dth
0

o0

-3 (0@t -0 g.n)2

2 2 13
< —2 23t
x| co é/”L,ft—f e _2¢ 2
2 6
2

2 3.3

ol 2,3

co ﬁﬂ&t_kz e2k
2 6

2 2
T 3 13 2
[(olk + [ p1 (D) (t)dtJ{e’lk3t _ge 2 co{? A3t +%J] +
0

2
153

=23t
S

+e

3,3
T

L

2

(33)
(34)

(30— FLY) g (00—
}, (35)

hy (O () — (0.1) —
(36)

from (31) into (35) and (36),

(h2(t) - f(L1) g(0,1) -

2
3
k

2
co £ﬂ§t+£ +
2 3

2
T —
+2cos§iETJ +
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1 T
_[(ka + _[ P, (tuy (t)dtj x
0

2

1 33 2

_713 £ 237 < T

—e 2 Kt \/—,13t p2'k +2cos§lk3T + IGk (t, 7)Fy (r,u,a,b)dr}, (37)
0

bt) = [h @] {h.(t) (3 (t) - F L) h, (&) (h{(X) - F(O,0) -
2 -1
® 3.3 2
_Z((—l)k hl(t) —h2 (t))ﬁﬁ ezj’kT + 2COS§AET {{(ﬂ()k +]‘ po (t)uk(t)dtJX
0

=1

2 2 12 2
— =23t ol
x[CO{?&Et—%J ekt _pg 2% co{?ﬁfwg] +

2
33 2
V3 a7

2
15 2
-3t = 237
“ {\/_ﬂ% 6} e? 2005 A

—2e 2

3 3 2
,,3 sl
& {‘/_A3t+ J+
2 3

T
[Cﬁlk + _" Py (t)uy (t)dtJ
0
1{ [0, ()dj
—_—— + | po (Du (t)dt |x
\/— § Dok ! 2 k

2 2 12 2
i —7ﬂ3t i
x| sin £/13T—— et _ge 2 —‘/_/13t -
2 3 3
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2

2
o g e

_e 2 sinTAEt g2 +200°= AT + [G (t.7)F (r.u.ab)dr
0

Thus, the solution of problem (1)-(3), (10)-(12) is reduced to the solution of
system (32), (37), (38) with respect to unknown functions u(x,t),,a(t) and b(t).

To study the question of uniqueness of the solution of problem (1)-(3), (10)-
(12), the following lemma plays an important role.
Lemma 2. Let {u(x,t),a(t),b(t)} is an arbitrary classical solution of (1)-(3),

(10)-(12). Then the functions u, (t),k=0,1,2,. .., defined by the relations
1
uy (t) =my fu(x,tycos y xdx, k=0,12, ...,
0

which satisfy the counting system (30) and (31) on [0,T].

Proof. Let {u(x,t),a(t),b(t)} is an any solution of problem (1)-( 3), (10)-(12).
Then multiplying both parts of equation (1) by the function my cosi,x,
k=0,12,..., integrating the resulting equality over x from 0 to 1 and using the

relations

1 3 1
My [ Ugee(x,t) COS xdx:j?[mk [u(xt)ycos xde: up(t), k=012,...,
0 0

1 1
My [ Uy (X, ) COS Ay XdX = —AF {mk.[u(x,t)cos/lk xdx):—ﬂﬁuk(t), k=012,...,
0 0

we are convinced that equation (28) is satisfied. Similarly, from (2) we obtain that
condition (29) is satisfied.

Thus, u (t), k=0,12,..., is a solution of problem (28), (29). From this it
follows directly that the functions u, (t), k=0,1,2,..., satisfy the system (30), (31)

on [0,T]. The lemma is proved.
Obviously, if u, (t) = mkjl'u(x,t)cosikxdx, k=0,12,..., is a solution to system
0
(30) and (31), then the triple {u(xt),a(t),bt)} of functions
u(x,t)= éuk (t)cosA, X, a(t)and b(t) is a solution to system (32), (37), (38).

Corollary 1. Let system (32), (37), (38) has unique solution. Then problem (1)-
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(3), (10)-(12) cannot have more than one solution, i.e. if problem (1)-(3), (10)-(12)
has a solution, then it is unique.

Denote by B;T (see [3, 4]), the space of all functions of the form
u(x,t)= > u, (t)cos A x, (x,t) e Dy,
k=0
where each of the functions u, (t) is continuous on [0,T] and for it the following

relation holds
1

1) =0 Ol +{kz(zﬁ I (t>||C[O,T])2}2 oo

)
We define the norm on this space as follows:
Jlu (X’t)”BS,T =1(u).

By ET3 we denote the space consisting of the topological product
B>+ xC[0,T]xC[0,T]. The norm of the element z={u,a,b}e E? is defined by the
formula

"Z"E% :||u(x,t)||B§YT +”a(t)"c[o,T] +"b(t)”c[o,T]'
Note that BS,T and g2 are Banach spaces (see, e.g., [2]).

We define in E? an operator
cD(uv a, b) = {q)l(ul a, b), (DZ (U, a, b)’ CD3(U’ a, b)}: {iﬁk (t)xk (X)v 5(t)v 6-(t)}’
k=0

where Uy (t), U, (t), a(t) and E(I) are determined by the right-hand sides (30),

(31), (37) and (38), respectively.
Using simple transformations and direct calculations we obtain

(o (t)"C[O,T] <[@oo| + T[[pg (t)"C[O,T] Juo (t)"C[O,T] +T “¢10| +

3
+ T" Py (t)”C[O,T] "uO (t)"C[O,T] )+ ET ’ Q¢20| + T" P2 (t)"C[O,T] "uO (t)"C[O,T] )+

1
T ) 1
+3r2ﬁ[j|fo(f)|2dTJ2 +ST2\/?"b(t)”qoy-r]{“go(z’)|2dr]2 .
° 0

+3T 3||a(t)||C[O’T] luo (t)||c[0ﬂ , (39)
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(5 G Ol
1

/13|</’0k j2+"p0(t)"c[on (i(f Iuk('[)"C[OT] ]

M8

=~
Il
LN

k=1

&/E{

+6\/§{ i:(/is|¢1k|)zj +||p1(t)||C[OT] (i(’13||uk(t)"qon ]

k k=

LN
LN

Il MS

=~

1 k=1

+8\/E{ (ﬂk|¢’2k|)J +||p2(t)||C[0T]T(i:(}”s"uk(t)"c[m] j ]+

1

T 2
(2| (D))? er +1o\/ﬁ||b(t)||c[m(j (/12|gk(,)|)zer +

ok

+1o\/ﬁ[}§

k=1

N | = "‘

1045 T||a(t)||C[OT]( ua”uk(t)”qon)z] | 40

[8®legory < “ ho] “ {” hi(®) - £(0,6)aLt)- (3 ®) - FL.1) g0t o)+

+[lo@ o) +]g, t)|||C[O’T] [i o j 2.

1 1
{&/{(Z(ﬂ%kb J +||p0(t)||C[OT] (i(lﬁ”uk(t)”cmT])z]Z}"

k=1

+ 6

|

1
Z(’ﬂ%ka +||p1(t)||C[OT] (Z(’q‘g |uk(t)"c:[0T] }
1
2

+843

w

1
[ki(lﬂ%kbzy+"p2(t)”c[oT] (ZMEHUKG)HC[OT] j }r
a
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<z§|gk(r)|>2er2 +

T o
(/1§|fk (1)|)2er2 +lOﬁ||b(t)||C[O‘T][J'Z
0 k=

k=1

+10\/?Ui

k=1

1
+ 10T||a(t)||C[O’T](ki:1(/1ﬁ Jlui (t)||C[O’T])2J2 ] J (41)

o]

C[o,T]

< H[h(t)]luc[m{||h1 O 0 - F@L1)-h, OO - FO.D)egr, *

1
+Jhe @]+ s (t)lllc[o,n(ki:l/1 2 ] 2

k=1

1 1
{8\/_{( usmp} +||po(t)||C[O’T]T(i(/1ﬁ||uk(t)||c[0T])2j2}+

1
+ 6{ Z (’13 |(p1k |) ] + " P1 (t)”qo T] [z (’13 "uk (t)"qo T] }
1
2

+843

w

1
[ki(lﬂ(l’zkpzjz+"p2(t)"c[oT] [Z(f"uk(t)"qoﬂ J }r
|

+1oﬁ@i

k=1

1

(ﬂk|gk(f)|) de +

.
(ﬂz|fk (T)D dTJ +l0‘/_"b(t)"0[0T] J-
0

(42)

—

1
5
+10TJa®l oy [Z i lue Ollgory)? ]

Assume that the data of problems (1)-(3), (10)-(12) satisfy the following

conditions:
1. ¢, () eC?[0,1], ¢(x) € L,(0]), ¢!(0)=¢!(1)=0,i =01,

2. 9,(X) e C'[0], 95 (X) € L, (0.0), 95 (0) = 05 (1) =0, .
3. f(x 1), f,(xt) e C(Dy), T (xt)eLy(Dy), f,(0t)=f,(Lt)=0,0<t<T,

83



Elmira H. Yusifova [ Journal of Mathematics & Computer Sciences v. 1 (3), (2024)

4.9(x1),9,(x,t) eC(Dr), 9 (X,t) € Ly(Dy), 9,(0,t) =9, (L1)=0,0<t<T,
5.p;(t)eC[0,T],i=0,12, h(t)eC?0,T], i=12 ht)=h(t)g{Lt)-h,(t)g(0,t)=0,
0<t<T.
Then, by virtue of (39), (40), (41) and (42), we have, respectively,
”GO (t)"C[O,T] <A+

+ B MO cgory U Ol g3, +CLMux g3 +DrMoW]crory  (43)
1
DICILACIN JSYNUT

#Ba a0 106 D]z, +CaMNxDlg, Loy (44
|30lgor, =AM+

+ By (] a0 ggorrg M O g3, +CaMux Vg3 +DsM POl oy (45)
[P Olgor, < AT+

B DOl Ol + CoMuOlig, + DIy )

where

3
A(T) = ”(ﬂo (X)”L2(0,1) +T ”‘ﬂl(x)”Lz(o,l) + ET 2”¢2 (X)" Loy T 3r? ‘/?”f (x, t)" L(Dr)’
3
B/(T)= 33, C,(M=T ”pO (t)"c[o,T] +T 2" Py (t)"c[o,T] +ET3" P2 (t)"c[o,T]'
Dy (T) =3 2VT g

A,(T) =8415)

250N, 0 *
+6v5 |y (x)| Lon* 8v15p} O, on) + 10V/5T |, (x,1)] LOon
B, (T)=10/5T,,
C2 (1) =8V15 T|po O cyor) +6v5 TP Olpor) +8Y15 TIP2 Ol oy

Dy (T) =10V5T g, (%0 5.

(h(®) - F(0.))g@.t)- (h3 () - FL1)g(0,1)

+
C[0,T]

) :“[h(t)]l“c[oﬂ{‘
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1
lo@n)+ |9(0't)|||qo,n£é ﬂizjz x

XI:B\/_HQ)W(X)" Loy " () Ly (0. 1)+8‘/_”¢’ (X)”L 01 +20‘/_" F (6D (DT):I}

o, =100l (S5 J ot +/9(0.0] 7,7

1
c;(M) :u[h@rucm(g ﬂ) loc. o] +l9. ]| o, >

XT(MII Po®lcgory +61PL®lcgory +8‘/§"p2(t)"c[o,T]J’

1
Ds(T) = H[h(t)]iluc[ox] |||g @ t)| + |g ©. t)|"c[o,T] [é/ﬁz J 2 20\/ﬂ|g (X t)" L2(Dr)’

Au(T) = H[“(O]1“C[0,T]{||h1(t)(hé'<t> ~ @)= OO - 0., +

1

+[Jhy )] + |, (t)|||C[O’T](§‘1 ﬂkzjz x

><[8\/_||¢’W(X)"|_2(01) (X)"LZ(01)+8‘/_"¢’ (X)”L (09 +20‘/_"fxx (x, t)"L (DT):I}
1
® )2
B, (M) =|[n@]| ., I 0]+ vy (t)|||c[on(kz_lik2} T

1

17

Cem =[], I ol+ |h2(t>|||c[0T][ZﬁkJ x

XT[SﬁII Po®lcgory +61PL®lcgory +8‘/§"p2(t)"c[o,T]J’
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1
|h1 (t)| * |h2 (t)|||c[o,T](§}LEZ JZ 20\/?”9”(X't)”Lz(Dr)'

k=1

D, (M) =|[h®]*
It follows from (43)-(46) that
|TOgg, +[EOleor) + b (t)”C[OYT] < AT) +

+BMJa®|efor; M Dlgs, +CMutxDlgs +DMOPpOlgory  (47)

C[O,T]||

where
AM) =AM+ A (T) + As(T) + Ay (T), B(T) =By (T) +By(T) + By (T) + By (T),
C(T)=Cy(T)+Co(T) +C3(T) +C4(T), D(T) = Dy(T) + Dy(T) + Dy (T) + Dy(T).
Let Kp ={z<Ef : ||z <R}.
The main result of this paper is the following theorem.
Theorem 2. Let conditions 1°-5° be satisfied and the following inequality holds

(BT)(A(T) +2)+C(T) + D(T))(A(T) +2) <1. (48)
Then problem (1)-(3), (10)-(12) has a unique solution in the ball Ky cET3 for
R=AT)+2.
Proof. Consider the following equation
7=z, z={u,a,b}eES, (49)
where the components ®;,i=12,3, of the operator ® are determined by the
right-hand sides of equations (32), (37) and (38).
Let R<A(T)+2. We consider the operator @ in the ball Ky < EZ. Similarly

to (47), it is easy to show that for any z,z;,z, € Ky the following estimates hold:

02l = AT) + B0 g 005 Dl +CNaCx D+ DOl gy, =
< A(T) +B(T)(A(T) +2)* +C(T)(A(T) +2) + D(T)(A(T) +2) , (50)
[®z, — @z, | g3 < B(T)R(ay (t) - a, (t)"C[O,T] +{Jug (X, 1) —uy (X, 1) &, )+
+ O (1) =z Bz + DO O) = b Ol g (51)

Then, by virtue of (48), it follows from (50) and (51) that the operator ® on
the set Ky < ET3 satisfies the conditions of the principle of contraction mapping.
Therefore, this operator in the ball K; has a unique fixed point z={u,a, b},

which is a solution of equation (49), i.e. z={u,a,b} is the only solution of system
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(32), (37), (38) in the ball K.
The functionu(x,t) as an element of the space 523:1 is continuous and has

continuous derivatives u, (x,t) and u, (x,t) in D;. Moreover, from (28) we get

98 Ollcgory < [2Ocgor o Olegory 2110 Vlcgor .,

1/2

1/2
(kzluklluwt)llqonf] Sﬁ(kzlwﬁlluk<t>||qo,n>2j +
\/EH a(uy (1) + fx(x,t)||c[0ﬂ“

L)
which implies that uy(x,t) € C(Dy).

It is easy to verify that equation (1) and conditions (2), (3), (10), (11) and (12)
are satisfied in the usual sense. Consequently, {u(x,t),a(t),b(t)} is a solution to
problem (1)-(3), (10)-(12). By Corollary 2 it is unique. The proof of this theorem is
complete.

Theorem 1, Theorem 2 and Corollary 1 implies the unique solvability of the
original problem (1)-(6).

Theorem 3. Let all the conditions of Theorem 2 be satisfied, and also let the
conditions

1 1
[fxtdx=0, [g(x,)dx=0,0<t<T,
0 0

1 1
[ [P0 lgary 1P Ollcgor, T +51P2 Ol T2+ (AM + 2)T2) <1

and the matching conditions (13)-(15) be satisfied. Then problem (1)-(5) has a
unique classical solution in the ball Ky for R=A(T)+2.
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