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Abstract 

This paper is devoted to study the inverse boundary value problem for a third-order 
partial differential equation with nonlocal boundary conditions, including integral 
conditions. Using variable separation method and analytical methods is proved the 
existence and uniqueness of the classical solution of the considered problem .  
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1. Introduction 

       Let },0,10:),{( TtxtxDT  where T  is a some positive constant. For the 

equation 

,),(),()(),()(),(),( txftxgtbtxutatxutxu xxttt   ,),( Dtx                (1) 

consider the inverse problem with boundary conditions 
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,10,),()()()0,(

0

02   xdttxutpxxu
T

tt                                              (2) 

Neumann condition 
,0),0( tux  ,0 Tt                                                       (3) 

 nonlocal integral condition 

  ,0,),(
1

0

Ttdxtxu                                                         (4) 

and with additional conditions 

                                      ),(),0( 1 thtu  ,0 Tt                                                 (5) 

),(),1( 2 thtu   ,0 Tt                                                (6) 

where ,2,1,0),(,)(),,( itpxtxf ii ,2,1),( ithi  are given functions and ),,( txu )(ta   

and   )(tb  are the desired functions. 

          Condition (4) is a non-local integral condition of the first kind, that is, it does 

not contain the values of the desired solution at the boundary points.  Note that 

problems of type (1)-(6) arise when studying various issues in natural science, 

namely, when studying fluid filtration in porous media [2, 15], heat transfer in a 

heterogeneous medium [7, 16], moisture transfer in soil [8, 11], propagation of 

acoustic waves [13], questions of mathematical biology [12] and others. 

        Direct and inverse problems for partial differential equations with 
nonclassical boundary conditions were studied in [1, 3-7, 9, 11, 15, 16] using 
various methods. In this paper we use the Fourier method, analytical methods 
and methods of functional analysis, we study the inverse problem for equation (1) 
with boundary conditions (2), Neumann condition (3),  nonlocal integral condition 
(4) and additional conditions (5), (6). 

We introduce the notation: 

)}(),(),(),(:),({)( 23,2
TtttTT DCtxuDCtxutxuDC  . 
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By the classical solution of the inverse boundary value problem (1)-(6) we 

mean a triple )}(),(,),({ tbtatxu  of functions ),(),( 3,2
TDCtxu  ],,0[)( TCta   

],,0[)( TCtb   satisfying equation (1) and conditions (2)-(6) in the usual sense. 

 

2. Reduction of problem (1)-(6) to an auxiliary boundary value problem 

      To study problem (1)-(5), we first consider the following problem: 

 ,0),()()( Tttytaty                                                             (7) 

,)()()0(,)()()(,)()()0(

0

2

0

1

0

0  
TTT

dttytpydttytpTydttytpy                     (8) 

where ],0[)( TCta  , ,2,1,0),( itpi  are given functions and )(tyy   is the desired 

function, where by the solution of problem (7), (8) we mean a function that is continuous 

on together with all its derivatives included in equation (7), and satisfies conditions (7), (8) 

in the usual sense. 

        Lemma 1 [3]. Let the following condition be satisfied: 

.1)(
3

1
)(

2

1
)()( 2

],0[

2

],0[2],0[1],0[0 







 TtaTtpTtptp

TCTCTCTC
     (9) 

Then problem (7) - (8) does not have a non-trivial solution. 

        Along with the inverse boundary value problem (1)-(6), we consider the following 

auxiliary inverse boundary value problem: it is required to determine a triple 

)}(),(),,({ tbtatxu  of functions ),(),( 3,2
TDCtxu  ],,0[)( TCta   ],,0[)( TCtb   satisfying 

relations (1)-(3) and the following relations 

                                   ,0,0),1( Tttux                                                             (10) 

                         ,0),,0(),0()()()(),0()( 11 Tttftgtbthtatuth xx                 (11) 

                        ,0),,1(),1()()()(),1()( 22 Tttftgtbthtatuth xx                  (12) 

where 

                  .0,0),0()(,1)()( 21 Tttgthtgthth                       
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         Theorem 1. Let ,]1,0[)( Cxi   ],,0[)( TCtpi  ,2,1,0i ],,0[)( 3 TCthi   

,2,1i    ,0),0()(,1)()( 21  tgthtgthth ,0 Tt  ),(),( TDCtxf   ,0),(
1

0
 dxtxf  

,0 Tt  ),(),( TDCtxg   ,0),(
1

0

 dxtxg  ,0 Tt    and the following conditions of 

agreement are satisfied 

 
1

0

,2,1,0,0)( idxxi                                                          (13) 

 
TT

dtthtpThdtthtph

0

1111

0

1010 ,)()()()0(,)()()0()0(             

                    ,)()()0()0(

0

1212 
T

dtthtph                                                    (14) 

 
TT

dtthtpThdtthtph

0

2121

0

2020 ,)()()()1(,)()()0()1(         

                                
T

dtthtph

0

2222 )()()0()1( .                                                (15) 

Then the following statements are true: (i) each classical solution of problem (1)-

(6) is also a solution of problem (1)-(3), (10) –(12); (ii)  any solution to problem (1)-

(3), (10)-(12) that satisfies condition (9) is a solution to problem (1)-(6). 

         Proof. Let  )}(),(),,({ tbtatxu  be the solution of problem (1)-(6). Integrating 

equation (1) with respect to x  from 0  to ,1  we have  

 ),0(),1(),(
1

0
3

3

tutudxtxu
dt

d
xx  

,0,),(),()(),()(
1

0

1

0

1

0

Ttdxtxfdxtxgtbdxtxuta                     (16) 

whence, by conditions  ,0),(
1

0
 dxtxf ,0,0),(

1

0
Ttdxtxg   and  (4), implies (10). 

        Next, using ,2,1],,0[)( 3  iTCthi  and  differentiating three times (5) and 

(6), respectively, we get  
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),(),0( 1 thtut  ),(),0( 1 thtutt  ),(),0( 1 thtuttt  ,0 Tt                (17) 

),(),0( 2 thtut  ),(),1( 2 thtutt  ),(),0( 2 thtuttt  ,0 Tt                (18) 

Substituting 0x and 1x  into equation (1), we obtain, respectively, 

          ),1(),0(),0(),0( tutututu xxttxxxxxxtt     

                      ,0),,0(),0()(),0()( Tttftgtbtuta                               (19) 

            ),1(),1(),1(),1( tutututu xxttxxxxxxtt       

                           .0),,1(),1()(),1()( Tttftgtbtuta                                (20) 

From (19), taking into account (5), (17) and from (20), taking into account (6), (18), 

it follows, respectively, that (11) and (12) are satisfied. 

       Now suppose that  )(),(),,( tbtatxu  is a solution to problem (1)-(3), (10)-(12), 

and (9) is satisfied. Then from (16), taking into account (3) and (10), we obtain 

                                   .0,0),()(),(
1

0

1

0
3

3

Ttdxtxutadxtxu
dt

d
                          (21) 

       By (2) and conditions  
1

0

,2,1,0,0)( idxxi  we get 

,0)(

),()()0,(),()()0,(

1

0

0

1

0 0

0

0

1

0

0

1

0




































  

dxx

dxdttxutpxudtdxtxutpdxxu
TT



 

,0)(

),()(),(),()(),(

1

0

1

1

0 0

0

0

1

0

1

1

0




































  

dxx

dxdttxutpTxudtdxtxutpdxTxu
T

t

T

t



        (22) 

.0)(

),()()0,(),()()0,(

1

0

2

1

0 0

0

0

1

0

0

1

0




































  

dxx

dxdttxutpxudtdxtxutpdxxu
T

tt

T

tt



                                          

         Since, by virtue of Lemma 1, problem (21), (22) has only a trivial solution, 

then ,0),(
1

0

 dxtxu  i.e. conditions in (4) are satisfied. 

         Now, from (11), (19) and  (12), (20) we get   
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                     ,0)),(),0()(())(),0(( 113

3

Ttthtutathtu
dt

d
                            (23) 

                       .0)),(),1()(())(),1(( 223

3

Ttthtutathtu
dt

d
                             (24) 

By (2) and agreement conditions (14), (15), we have 

 
TT

dttutpudtthtutphu
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101 ),0()()0,0())(),0()(()0()0,0(  

,0)()()0()0()()()0(
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TT
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0
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),0()()0,0())(),0()(()0()0,0(  

 ,0)()()0()0()()()0(
0
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0

121








 






  
TT

dtthtphdtthtph                (25) 

 
TT
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202 ),1()()0,1())(),1()(()0()0,1(  

,0)()()0()1()()()0(

0

2020

0

202 




























 

TT

dtthtphdtthtph   
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t

T

t dttutpTudtthtutpThTu

0

1

0

212 ),1()(),1())(),1()(()(),1(  

,0)()()()1()()()(

0

2121

0

212 




























 

TT

dtthtpThdtthtpTh   

 
T

tt

T

tt dttutpudtthtutphu

0

2

0

222 ),1()()0,1())(),1()(()0()0,1(  

.0)()()0()1()()()0(

0

2222

0

222 




























 

TT

dtthtphdtthtph               (26) 

From (23), (25) and (24), (26), by virtue of Lemma 1, it follows that conditions (5) 

and (6) are satisfied. The proof of this theorem is complete.  
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3. Investigation of the existence and uniqueness of a classical solution to an 

inverse boundary value problem 

We will look for the first component ),( txu of the solution )}(),(),,({ tbtatxu of 

problem (1)-(3), (10)-(12) in the form 

,cos)(),(
0

xtutxu
k

kk




                                                 (27) 

where 


1

0

,cos),()(, dxxtxumtuk kkkk  ,...,2,1,0k  









,2,2

,0,1

k

k
mk  

(see, for example, [10]). Then, applying the formal scheme of the Fourier method, 

from (1), (2), we obtain 

,...,2,1,0,0),,,;()()( 2  kTtbautFtutu kkkk                      (28) 

 
T

ikkk

T

kkk
dttutpTudttutpu

0
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0
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,)()()(,)()()0(   

               
T

kkk
kdttutpu

0
22

,...,2,1,0,)()()0(                                         (29) 

where 

),()()()()(),,;( tgtbtutatfbautF kkkk    ,cos),()(
1

0

 xdxtxfmtf kkk   

,cos),()(
1

0

 xdxtxgmtg kkk   ....,2,1,0,,cos)(
1

0

  kixdxxm kikik  . 

 Next, from (28) and (29) we find 
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                         ,...,2,1,),,,(),(

0

  kdbauFtG k

T

k                                 (31) 

where 
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,0,),(

,0,),(
),(

Ttt

Ttt
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k
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),(  tk and ,0,),( Tttk   are determined by the formulas presented on page 

1651 in the paper [3].  

         After substituting the expression for )(0 tu
 
from (30), ,...,2,1),( ktuk  from 

(31) into (27), to determine the component ),( txu of the solution to problem (1)-

(3), (10)-(12), we obtain 
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Now, from (11) and (12), taking into account (27), we obtain respectively: 
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,)(),0()(),0()()()(
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kk tutfthtgtbthta                               (33) 
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2
22 )()1(),1()(),1()()()(

k
kk

k tutfthtgtbthta  .                      (34) 

Suppose that the inequality holds  

  .0,0),0()(,1)()( 21 Tttgthtgthth   

Then from (33) and (34) we obtain 

   


),0()),1()((),1()),0()(()()( 21
1

tgtfthtgtfththta  

,)()),0()1(),1((
1

2








k
kk

k tutgtg                                              (35)                         

   


)),0()(()()),1()(()()()( 1221
1

tfththtfthththtb  

.)())()()1((
1

2
21








k
kk

k tuthth                                          (36) 

Substituting the expressions ,...,2,1),( ktuk   from (31) into (35) and (36), 

respectively, we get 
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T
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         Thus, the solution of problem (1)-(3), (10)-(12) is reduced to the solution of 

system (32), (37), (38) with respect to unknown functions ),,( txu , )(ta  and ).(tb  

         To study the question of uniqueness of the solution of problem (1)-(3), (10)-

(12), the following lemma plays an important role. 

          Lemma 2. Let  )}(),(),,({ tbtatxu  is an arbitrary classical solution of (1)-(3), 

(10)-(12). Then the functions ,...,2,1,0),( ktuk  defined by the relations 


1

0

,cos),()( dxxtxumtu kkk  ,...,2,1,0k  

which satisfy the counting system (30) and (31) on ].,0[ T  

            Proof.  Let )}(),(),,({ tbtatxu  is an any solution of problem (1)-( 3), (10)-(12). 

Then multiplying both parts of equation (1) by the function ,cos xm kk   

,...,2,1,0k  integrating the resulting equality over x  from  0  to  1  and using the 

relations 

,...,2,1,0),(cos),(cos),(
1

0
3

31

0















  ktuxdxtxum

dt

d
xdxtxum kkkktttk      

,...,2,1,0,)(cos),(cos),( 2
1

0

2
1

0















  ktuxdxtxumxdxtxum kkkkkkxxk   

we are convinced that equation (28) is satisfied.  Similarly, from (2) we obtain that 

condition (29) is satisfied. 

        Thus, ,...,2,1,0),( ktuk  is a solution of problem  (28),  (29). From this it 

follows directly that the functions ,...,2,1,0),( ktuk satisfy the system (30), (31) 

on ].,0[ T  The lemma is proved. 

       Obviously, if  
1

0

,...,2,1,0,cos),()( kxdxtxumtu kkk 
 
is a solution to system 

(30) and (31), then the triple )}(),(),,({ tbtatxu of functions 

,cos)(),(
0

xtutxu k
k

k 




  )(ta and )(tb  is a solution to system  (32), (37), (38). 

       Corollary 1. Let system (32), (37), (38) has unique solution. Then problem  (1)-
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(3), (10)-(12) cannot have more than one solution, i.e. if problem (1)-(3), (10)-(12) 

has a solution, then it is unique. 

       Denote by 3
,2 TB  (see [3, 4]), the space of all functions of the form 







0

,),(,cos)(),(
k

Tkk Dtxxtutxu   

where each of the functions )(tu
k  is continuous on ],0[ T  and for it the following 

relation holds 

  .)()()(
2

1

1

2

],0[

3

],0[0 








 


k
TCkkTC

tutuuI   

We define the norm on this space as follows: 

).(),( 3
,2

uItxu
TB
  

        By 
3

T
E  we denote the space consisting of the topological product 

.],0[],0[3
,2 TCTCB T   The norm of the element 3},,{ TEbauz   is defined by the 

formula  

],0[],0[
)()(),( 3

,2
3 TCTCBE

tbtatxuz
TT

 . 

       Note that 3
,2 TB and 3

TE  are Banach spaces (see, e.g., [2]).  

       We define in 
3

T
E  an operator  
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where ),(~),(~
0 tutu k  )(~ ta  and  )(

~
tb  are determined by the right-hand sides (30), 

(31), (37) and (38), respectively. 

       Using simple transformations and direct calculations we obtain 
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         Assume that the data of problems (1)-(3), (10)-(12) satisfy the following 

conditions: 

1. ,1,0,0)1()0(),1,0()(],1,0[)( 2
2  iLxCx iiii   

2. ,0)1()0(),1,0()(],1,0[)( 2222
1

2   LxCx . 

3. ),(),(),(),(),,( 2 TxxTx DLtxfDCtxftxf  ,0,0),1(),0( Tttftf xx   



Elmira H. Yusifova / Journal of Mathematics & Computer Sciences  v. 1 (3), (2024) 

84 

 

4. ),(),(),(),(),,( 2 TxxTx DLtxgDCtxgtxg  ,0,0),1(),0( Tttgtg xx   

5. ,2,1,0,],0[)(  iTCtpi ,2,1,],0[)( 3  iTCthi   ,0),0()(,1)()( 21  tgthtgthth    

    .0 Tt   

       Then, by virtue of (39), (40), (41) and (42), we have, respectively, 
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It follows from  (43)-(46) that 
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where 

,)()()()()( 4321 TATATATATA  ,)()()()()( 4321 TBTBTBTBTB   
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 Let }.:{ 3
3 RzEzK

TETR   

       The main result of this paper is the following theorem.  

       Theorem 2. Let conditions 10–50 be satisfied and the following inequality holds 

.1)2)())(()()2)()(((  TATDTCTATB                          (48) 

Then problem (1)-(3), (10)-(12) has a unique solution in the ball 3
TR EK   for 

.2)(  TAR  

        Proof.  Consider the following equation  

,zz  ,},,{ 3
TEbauz                                              (49) 

where the components ,3,2,1,  ii of the operator   are determined by the 

right-hand sides of equations (32), (37) and (38). 

       Let .2)(  TAR  We consider the operator   in the ball 3
TR EK  . Similarly 

to (47), it is easy to show that for any RKzzz 21,,  the following estimates hold: 
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        Then, by virtue of (48), it follows from (50) and (51) that the operator   on 

the set 3
TR EK   satisfies the conditions of the principle of contraction mapping. 

Therefore, this operator in the ball RK  has a unique fixed point },,,{ bauz   

which is a solution of equation (49), i.e. },,{ bauz   is the only solution of system 
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(32), (37), (38) in the ball .
R

K  

        The function ),( txu  as an element of the space ,3
,2 TB  is continuous and has 

continuous derivatives ),( txux  and ),( txuxx  in .TD  Moreover, from (28) we get 
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which  implies that ).(),( Tttt DCtxu   

         It is easy to verify that equation (1) and conditions (2), (3), (10), (11) and (12) 

are satisfied in the usual sense. Consequently, )}(),(),,({ tbtatxu   is a solution to 

problem (1)-(3), (10)-(12). By Сorollary 2 it is unique. The proof of this theorem is 

complete. 
         Theorem 1, Theorem 2 and Corollary 1 implies the unique solvability of the 

original problem (1)-(6). 

         Theorem 3. Let all the conditions of Theorem 2 be satisfied, and also let the 

conditions  

,0,0),(,0),(
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1
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1
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and the matching conditions (13)-(15) be satisfied. Then problem (1)-(5) has a 

unique classical solution in the ball RK  for .2)(  TAR  
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