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Abstract 

In this paper, we consider the boundary value problem which describes the small 
bending  vibrations of homogeneous beam in cross-sections of which the longitudinal 
force acts, the left end of which is fixed, and the mass is concentrated on the right end.  
The oscillatory properties of eigenfunctions are studied and the basis property in 

),1,0(pL ,1  p of the system of root functions without one arbitrary remote function 

is established. 
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1. Introduction 

     We consider the following spectral problem   

),1,0(),())()(()()( )4(  xxyxyxqxyy                                            (1) 

,0)1()0()0(  yyy                                                                 (2) 

),1()1( yaTy                                                                           (3) 

where C is an eigenvalue parameter, ,yqyTy  q  is a positive absolutely 

continuous function on ]1,0[  and a  is some positive constant.  
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Problem (1)-(3) arises when separating variables in a boundary value problem 

describing small bending vibrations of a homogeneous rod, the left end of which is 

rigidly fixed, and at the right end there is a particle of mass .c  In particular, the 

case 0a  corresponds to the situation when a tracking force acts on the right 

end of the rod (see, for example, [6] and  [9]) .    

Note that in case of ,0a  problem (1)-(3), when the boundary condition (3) 

has a more general form, was investigated in the paper [7] (see also [8]), where it 

was shown that the eigenvalues of this problem are real, simple and form an 

infinitely increasing sequence. The oscillatory properties of eigenfunctions are 

also studied, with the help of which asymptotic formulas for eigenvalues and 

eigenfunctions are obtained. In addition, it is proved that the system of 

eigenfunctions without any arbitrary remote function forms a basis in the space 

),1,0(pL .1  p   

In the case of 0a  problem (1)-(3), when the boundary conditions has a more 

general form, was investigated in the paper [1]. In this case either all eigenvalues 

are real and simple, or all eigenvalues are simple and all except a conjugate pair of 

non-real are real, or all eigenvalues are real and all except one double or one 

triple are simple. In this paper we show that all eigenvalues  of problem (1)-(3) are 

real, simple and forman unboundedly increasing sequence.  Moreover, we study 

oscillation properties and basis properties in ),1,0(pL ,1  p  of eigenfunctions 

of this problem. 

2. Preliminary 

Lemma 1 [7, Theorem 2.1]. For each fixed C  there exists a nontrivial 

solution ),( xy of problem (1), (2) up a constant factor. 

Remark  1. We can choose the solution ),( xy of problem (1), (2) so that it is an 

entire function of parameter   for each ].1,0[x  

Alongside the spectral  problem (1)-(3) we  consider the spectral problem  
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where ].2,0[    It  follows from [5, Theorems 5.4 and 5.5] that the eigenvalues 

of  problem (4) are real, simple and form an infinitely increasing sequence 

;)}({ 1



kk   for each k  the eigenfunction )(, xyk   corresponding to the 

eigenvalue )(k  has exactly 1k  simple zeros in the interval ).1,0(  

      It follows from [5, Property 1] that the following relation holds: 

....)0()2(...)0()2()0()2(0 2211  kk         (5) 

      Obviously, the eigenvalues )0(k  and )2(k  are zeros of entire functions 

),1( y  and ),1( Ty respectively. It follows from (5) that the zeros of  functions 

),1( y  and ),1( Ty  do not coincide. Then the function 
),1(

),1(
)(






y

Ty
F   is defined in 

,))0(),0(()\(
1

1





k
kkRCD   where ,)0(0   and is a meromorphic function 

of finite order. 

        By [7, Lemmas 3.1 and 3.2] we have the following relations: 

,),(
),1(

1 1

0

2

2  dxxy
yd

dF



                                        (6) 

.)(lim 





F                                                     (7) 

   Let  )(m  denote the number of zeros of the function ),( xy contained in the 

interval ).1,0(  Then it follows from [2, Lemma 4 and formula (24)] (see also [7, 

Theorem 3.1]) and [8, Lemma 2.3]) that  

1)(  km   for )],0(),0((),0[ 1 kk     ,k                        (81) 


 )0,(

)()(



k

kim   for  ),,(                                          (82) 

where )( ki   is the oscillation index (see [3, p. 2323] ) of the eigenvalue ,, kk  

of  the spectral problem  









.0)1()0()0()0(

),1,0(),())()(()()4(

yyyy

xxyxyxqxy 
                                 (9) 

It follows from [3, Theorem 4.1] that there exists 0 such that the eigenvalues 

,, kk  of problem (9), which  lie on the interval ),(   and numbered in 

decreasing order, are simple and have oscillation index .1  

       By (5) and (6) we get .0)0( F  Moreover, in view of [1, Lemma 3.1] we have  
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where .,0)(
)0(




kFresc
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 Then it follows from (10) that 
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))0((

2)(
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whence  implies that  

0)(  F   for  )),0(,( 1                                      (11) 

i.e. the function )(F  is convex in the interval )).0(,( 1  

3. Main properties of eigenvalues and eigenfunctions of problem (1)-(3) 

     Lemma 1.  The eigenvalues of problem (1)-(3) are real, simple and form an at 

most countable set without finite limit points. 

     Proof.  It is obvious that the eigenvalues of problem (1)-(3) are the roots of the 

equation  

).,1(),1(  yaTy                                                      (12)                            

If RC \  is an eigenvalue of problem (1)-(3), then   is also eigenvalue of this 

problem since the coefficients )(xq  and a  are real. Note that ,),(),(  xyxy  and 

consequently, equality (11) holds for ,  if  it holds for .  

 By (12) it follows from [7, formula (4.2)] that 

.|),(|)(|),1(|)(
1

0

22 dxxyya    

Since RC \  from the last relation we get 

.0|),1(||),(| 2
1

0

2   yadxxy                                            (13) 

On the other hand, multiplying both parts of (1) by ,),( xy integrating the 

resulting relation in the range from 0  to ,1 applying the formula for integration by 

parts and taking into account the boundary conditions (2) and (3) we obtain 

,|),1(||),(|}|),(|)(|),({| 2
1

0

22
1

0

2









   yadxxydxxyxqxy        (14) 

whence, by (13), we get 

.0}|),(|)(|),({| 2
1

0

2   dxxyxqxy   
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It follows from last relation that ,),( constxy   and consequently, by (2) we have 

,0),( xy  which contradicts the fact that    is an eigenvalue of problem (1)-(3). 

 Recall that the zeros of the entire function on the left-hand side of Eq. (12) is  

eigenvalues of the boundary-value problem (1)-(3) which are real. Consequently, 

this function does not vanish for nonreal .  Hence it does not vanish identically 

and  therefore, its zeros form an at most countable set without finite limit points. 

  Remark 1. Note that if   is an eigenvalue of problem (1)-(3) and ,0),1( y

then 0),1( Ty which contradicts the relation  (5).   

 By Remark 1 the equation (11) is equivalent to the equation  

.)(  aF                                                            (15) 

 If   is a multiple eigenvalue of problem (1)-(3), then we have 

 aF )(   and   .)( aF                                          (16) 

Hence it follows from (6) that 

.0),1(),( 2
1

0

2   yadxxy                                        (17) 

Since R  by (17) from (14) we obtain 

,0)},()(),({ 2
1

0

2   dxxyxqxy   

whence implies that ,0),( xy  a contradiction. The proof of this lemma is 

complete. 

 Lemma 2. Eq. (15) can have only one root in the interval ))0(),0(( 1 kk    for 

.2,  kk  

  Proof.  Let Eq. (15) have at least two roots 

1k  and ,2



k    21 kk  (we can 

assume that these zeros are consecutive and 

1k  is the closest to )0(1k ) in the 

interval ))0(),0(( 1 kk    for some .2k  By (6), the function )(F  is continuous in 

the interval ))0(),0(( 1 kk    and, increasing, takes values from   to .  Since 

0a the function  aG )( also increases in this interval. Hence  

0)(   aF  for ,1

 k 0)(   aF  for    21 kk    and 

0)(   aF  for ,2

 k  

whence implies that 

0)( 1   aF k  and .0)( 2   aF k  
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 On the other hand, since 02 


k  from (14) we obtain  

.0),1(),( 2

2
1

0
2

2 


kk yadxxy                                     (18) 

In view of (18) by (6) we get   

,0)( 2   aF k  

a contradiction. The proof of this lemma is complete. 

 Theorem 1. The eigenvalues  of problem (1)-(3) form an unboundedly 

increasing sequence 

1}{ kk  such that  

)0,(1    and  ))0(),2(( 1 kkk     for   .2k                  (19) 

Moreover, the eigenfunctions ,),( kxyk corresponding to the eigenvalues 

,, kk have the following oscillation properties: the function )(xyk  for 2k  

has exactly 1k simple zeros, the function )(1 xy  has 
 )0,( 1

)(



k

ki  simple zeros in the 

interval ).1,0(   

 Proof. By (6), (7) and (10) we have  

,)(lim
0)0(







F
k

,)(lim
0)0(1


 




F
k

 ,0))2(( kF              (20) 

0)( F  for ))2(),0(( 1  kk  and 0)( F  for ,))0(),2(( kk  .k    (21) 

 By (11) the function )(F  is convex in the interval )).0(,( 1   Since the 

function  aG )(  is increasing in this interval, by (20) and (21) it follows that Eq. 

(15) has two solution )0,(1   and )).0(),2(( 112    Therefore, according to 

(82) and (81), the number of zeros of the function )(1 xy contained in )1,0(  is equal 

to 
 )0,( 1

)(



k

ki  and the function )(2 xy has no zeros in ).1,0(  

 By the first two relations of (20) and Lemma 2 Eq. (15) has unique root 1k  in  

))0(),0(( 1 kk    for  each  .2k Moreover, by the second relation of  (21) we have 

)).0(),2((1 kkk    Then by (81) the eigenfunction )(1 xyk  for 2k  has exactly 

1k  simple zeros in the interval ).1,0(  The proof of this theorem is complete. 

 In view of  [1, Theorem 5.1] (see also [7, Theorem 6.1]) we have the following 

asymptotic formulas for eigenvalues and eigenfunctions of problem (1)-(3). 

 Theorem 2.   The following asymptotic formulas hold: 
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where relation (23)  holds uniformly for ].1,0[x  

4. Basis properties of eigenfunctions of problem (1)-(3)   

   Let CLH  )1,0(2  be the Hilbert space with scalar product 

.)()(}),{},,({)ˆ,ˆ( 1
1

0

nmadxxxynmyy HH

                   (24) 

  It is obvious that problem (1)-(3) reduces to the spectral problem for the 

operator HHLDL )(:  which is defined as follows: 

)},1(),({},{ˆ ayymyLyL   

)}.1(,0)1()0()0(),1,0()(),1,0(:},{ˆ{)( 2

4

2 aymyyyLyWyHmyyLD    

 Note that the operator L  is well defined, and consequently, problem (1)-(3) 

can be rewritten in the following equivalent form  

).(ˆ,ˆˆ LDyyyL                                                      (25) 

In this case the eigenvalues ,, kk of problem (1)-(3) and those of problem (25) 

coincide together with their multiplicities; moreover, there exists a one-to-one 

correspondence between the eigenfunctions of the two problems, 

.,)}1(,{ˆ  kyayyy kkkk  

 Let HHJ :  be the operator defined by  

}.,{},{ˆ mymyJyJ   
Then this oparator generates the Pontryagin space CLП  )1,0(21  with inner 

product (see [4]) 

.)()(}),{},,({)ˆ,ˆ( 1
1

0
1

nmadxxxynmyy HП

   

 Theorem 3 [1, Theorem 2.1 and Lemma 2.1]. The operator L  is J -self-adjoint 

in 1П . If L  is the adjoint operator of L in ,H  then .JLJL   

               In view of  Lemma  1 we have  

kkk yyL ˆ  for any .k                                       (26) 

By },,{ˆ,}ˆ{ 1





  kkkkk s we denote the system of eigenfunctions of the operator 

,L i.e., 
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  kkkL  ˆˆ   for any .k                                   (27) 

Then by Theorem 3 it follows from (26) and (27) that 

kk yJˆ   for any .k                                      (28) 

Let  

).1()()()ˆ,ˆ( 2
1

0

221
1

0

2

1 kkkkПkkk aydxxymadxxyyy                 (29) 

It follows from Remark 1 and [1, Lemma 6.1] that  

0km  and 0k  for any .k                                    (30) 

Hence by [1, Lemma 6.3] and (28) the elements of the system },,{ˆ,}ˆ{ 1 kkkkk s 



adjoint to the system 

1}ˆ{ kky  are defined as follows: 

},,{ˆˆ 111

kkkkkkkk myJy     

and consequently, by (30), we have  

01  

kkk ms   for any  .k  

Then follows from [1, Theorem 6.2] the following result. 

 Theorem 4. Let r be an arbitrary natural number. Then the  system 

 rkkky ,1}{
 

of eigenfunctions of problem (1)-(3) forms a basis in the space ),1,0(pL ,1  p  

which is an unconditional basis for .2p Moreover, the system 

 rkkku ,1}{
 
adjoint  

to the system 

 rkkky ,1}{
 
is determined as follows: 
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