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Abstract 

In this paper, we find a condition under which the smooth trivariate function can be 

represented  by sums of generalized ridge functions and give a partial solution of the 

problem, posted by A.Pinkus in his monograph “Ridge Functions”. 
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1. Introduction 

A ridge function is any multivariate function RRF n :  of the form 

 

 
* Corresponding author.  

E-mail address: aliyevrashid@mail.ru (R. Aliev),  fidanisgandarli100@gmail.com (F. Isgandarli) 

mailto:aliyevrashid@mail.ru
mailto:fidanisgandarli100@gmail.com


 Rashid Aliev, Fidan Isgandarli/Journal of Mathematics & Computer Sciences v. 1 (1), ( 2024),  

26 

 

     nnxaxaxaffF   ...2211xax , 

where   n
n Rххх  ,...,, 21x ,    0\,...,, 21

n
n Raaa a  is a fixed vector 

(direction) and RRf :  is a univariate function. These functions arise naturally 

in various  fields. They arise in computerized tomography (see: [1, 2]), statistics 

(see: [3, 4]), data analysis (see: [5, 6]) and neural networks (see: [7, 8]). These 

functions are also used in modern approximation theory as an effective tool for 

approximating multivariate functions (see: [9, 10]). We refer the reader to the 

monographs of A.Pinkus [11] and V.Ismailov [12] for a detailed and systematic 

study of ridge functions. 

One of the basic problems concerning the approximation by sums of ridge 

functions is the problem of the representability of a given multivariate function F  

by sums of ridge functions. That is, assume we are given a multivariate function 

RRF n : , and fixed pairwise linearly independent vectors dk Ra , mk ,1 . 

It is required to find a condition under which the function F  can be represented 

in the form 

   



m

k

k
kfF

1

хаx , 

where RRf k : , mk ,1  are the univariate functions. This problem has a 

simple solution if the dimension of the space is 2n  and a given function 

 yxF ,  has partial derivatives up to m -th order. For the representation of the 

function  yxF ,  in the form 
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k
kkk ybxafyxF

1
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it is necessary and sufficient that 

0
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In the case of more than two variables, this condition changes slightly. 

Theorem 1 (P.Diaconis, M.Shahshahani [13]). Let m
аа ,...,1  be pairwise 

linearly independent vectors in nR . Let kH  denote the hyperplane 
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 0:  knR аcc , mk ,1 . Then a function    nm RCF   can be represented 

in the form 

     ххаx 1
1




  m

m

k

k
k PfF , 

where  х1mP  is a polynomial of degree less than m , if and only if 

  0
1 1


















 
 

m

k

n

s s

k
s f

x
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for all vectors   kk
n

kk Hcc  ,...,
1

c , mk ,1 . 

Remark 1. There are examples showing that one cannot simply dispense 

with the polynomial  х1mP  in the above theorem. 

 A multivariate function RRF n :  of the form 

   xaxax 
d

fF ,...,1
 

is called a generalized ridge function, where ni Ra , di ,1  are fixed linearly 

independent vectors (directions), nd 1 , and f  is a real-valued function 

defined on dR . For 1d , generalized ridge function reduces to a ridge function. 

In this paper, we find a condition under which the smooth trivariate 

function  321 ,, xxxF  can be represented  by sums of generalized ridge functions 

and give a partial solution of the problem, posted by A.Pinkus in his monograph 

“Ridge Functions”. 

 

2. Main results 

 

Definition 1. Let  d
aа ,...,1  and  d

bb ,...,1 , nd 1 , be linear 

independent vector systems  in nR . If 

   dd spanspan bbaа ,...,,..., 11   

then the systems  d
aа ,...,1  and  d

bb ,...,1  are called eqiavalent, otherwise, that 

is, if 
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   dd spanspan bbaа ,...,,..., 11  , 

then the systems  d
aа ,...,1  and  d

bb ,...,1  are called non-eqiavalent. 

Remark 2. Obviously, if the systems  d
aа ,...,1  and  d

bb ,...,1  are 

eqiavalent, then any generalized ridge function of the form 

   xaxax 
d

fF ,...,1
 also has the form    xbxbx 

d
gF ,...,1

. Therefore, 

when defining a generalized ridge function, without loss of generality, we can 

assume that the vectors d
aа ,...,1  are unit and mutually perpendicular. 

Let's consider the following problem: assume we are given a multivariate 

function RRF n : , and fixed pairwise non-eqiavalent vector systems 

    d,11,1 ,...,aа ,...,     dmm ,1, ,...,aа  in nR . It is required to find a condition 

under which the function F  can be represented in the form 

       



m

k

dkk
kfF

1

,1, ,..., xaxax , 

where RRf d
k : , mk ,1  are the real-valued functions. 

In this paper we give a solution to this problem in the case of 3n , 2d . 

Theorem 2. Let  11 ,bа ,...,  mm
ba ,  pairwise non-eqiavalent vector 

systems in 3R . Then the function   3RCF m  can be represented in the form 

    



m

k

kk
kfF

1

, xbxax ,    3Rx ,                                 (1) 

if and only if 

  0
...1





x

m

m

ll

F
,   3Rx ,                                         (2) 

where 3Rlk   is a unit vector, perpendicular to the vectors k
a  and k

b , mk ,1 . 

At first, we prove the auxiliary lemma. 

Lemma 1. Let a  and b  any linearly independent vectors in 3R  and the 

vector 3Rl  is not perpendicular to the vector space  ba,span . Then for any 
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function      21, RCvu   there exist a continuously differentiable 

generalized ridge function of the form    xbxax  ,f  such that 

   xbxax 



,

l
                                             (3) 

for any 3Rx . 

Proof of Lemma 1. It follows from Remark 2 that without loss of generality, 

we can assume that the vectors a  and b  are unit and perpendicular. Denote by c  

the unit vector, perpendicular to the vectors a  and b . Let 

cba  l . 

As the vector 3Rl  is not perpendicular to the vector space  ba,span , 

then 

022   . 

Denote 
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It follows from the equations 
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where 
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that 
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On the other side, it follows from   0



x

c
 that the function   is of the 

form    xbxax  ,f . This completes the proof of the lemma. 

Proof of Theorem 2. Necessity. Let the function   3RCF m  is of the 

form (1). For any 3Rx  and 3Rh  we denote by  xh F  the increment 

     xhxxh FFF   

of a function F . Then it follows from (1) that for any 3Rx  and for any 

Rtt m ,...,1  

  0...
2211

  xF
mm ltltlt ,                                           (4) 

where 3Rlk   is a unit vector, perpendicular to the vectors k
a  and k

b , mk ,1 . 

It follows from (4) that for any 3Rx  
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Sufficiency. Let the function   3RCF m  satisfy condition (2) for any 

3Rx . Let us write equation (2) in the form 

  0
...2

1

1






















 

x
m

m

ll

F

д
.                                               (5) 

It follows from (5) that the partial derivative 
m

m

ll

F



 

...2

1

 of the function F  

independent of the direction 1l . Therefore there exist a function RR 2
1 :  

such that 
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   xbxax 


 
11

1
2

1

,
...


m

m

ll

F
,  3Rx .                                 (6) 

From condition   3RCF m  we obtain that   21
1 RC . Now let us 

write equation (6) in the form 

   xbxax 
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m
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д
,  3Rx .                             (7) 

It follows from lemma 1 that there exists a continuously differentiable 

generalized ridge function of the form 

   xbxax  11
11 ,g                                               (8) 

such that 

   xbxax 


 11
1

2

1 ,
l

,  3Rx .                                  (9) 

It follows from (7) and (9) that for any 3Rx  

  0
...

1
3

2

2























 

x
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д
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Then the function 1
3

2

...




 

m

m

ll

F
 independent of the direction 2l . 

Therefore there exist a function RR 2
2 :  such that 

     xbxaxx 


 
22

21
3
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,
...


m

m

ll

F
,  3Rx .                      (10) 

Since the functions 
m

m

ll

F



 

...3

2

 and 1  are continuously differentiable, then 

we get that the function 2  also continuously differentiable in 2R . It follows 

from (8) and (10) that 

     xbxaxbxax 
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Continuing the above process, until it reaches the function F , we obtain 
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the desired result. This completes the proof of the theorem. 

 

3. The smoothness problem in generalized ridge function representation 

 

Assume we are given a function RRF n :  of the form 

       



m

k

dkk
kfF

1

,1, ,..., xaxax ,                                 (11) 

where     d,11,1 ,...,aа ,...,     dmm ,1, ,...,aа  are fixed pairwise non-eqiavalent 

vector systems  in nR  and RRf d
k : , mk ,1  are the real-valued functions. 

Assume, in addition, that F  is of a certain smoothness class, that is,    ns RCF 

, where 0s  (with the convention that      nn RCRC 0 ). What can we say 

about the smoothness of the kf ? Do the kf  necessarily inherit all the 

smoothness properties of the F ? 

If 1d  and 1m  or 2m  the answer is yes (see [12]). If 1d  and 3m  

the picture drastically changes. For 3m , there are smooth functions which 

decompose into sums of very badly behaved ridge functions. For example, if 1h  be 

any non linear solution of the Cauchy Functional Equation 

     yhxhyxh  , 

then the zero function can be represented as 

     yxhyhxh  110 .                                       (12) 

Note that the functions involved in (12) are bivariate ridge functions with 

the directions (1,0), (0,1) and (1,1), respectively. This example shows that for 

smoothness of the representation  (11) one must impose additional conditions on 

the representing functions kf , mk ,1 . 

In case 1d  it was first proved by M.Buhmann and A.Pinkus [14] that if in 

(11)    ns RCF  , 1ms  and  RLf
lock
1  for each k , then   RCf s

k   for 

mk ,1 . Later, A.Pinkus [15] generalized extensively this result. He solved this 
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problem for any  Zs , while imposing weaker conditions on the functions kf . 

In case 2d  the situation is slightly more problematic. Consider, for 

example, the case 2d , 3n , 2m ,    0,0,11,1 а ,    0,1,02,1 а , 

   0,1,01,2 а ,    1,0,02,2 а . Thus 

     322211321 ,,,, xxfxxfxxxF  . 

Setting    2211 , xgxxf   and    2322 , xgxxf   for any arbitrary 

univariate function g , we have 

   322211 ,,0 xxfxxf  , 

and yet 1f  and 2f  do not exhibit any of the smoothness properties of the left-

hand side of this equation. 

Now consider the following natural and interesting question. Assume we 

are given a function    ns RCF   of the form (11). Is it true that there will always 

exist   ds
k RCg  , mk ,1  such that 

       



m

k

dkk
kgF

1

,1, ,..., xaxax ? 

This question was posed in M.Buhmann and A.Pinkus [14] for ridge function 

representation and Pinkus [11] for generalized ridge function representation. In 

[17, 18, 19], the authors gave a partial solution to the above representation 

problem for ridge function representation. In [19], this problem for ridge function 

representation is solved up to a multivariate polynomial:  

 Theorem 3 (R.Aliev, V.İsmailov  [19]). Assume a function  nRCF   is of 

the form  

   



m

k

k
kfF

1

xax ,                                                 (13) 

where m
аа ,...,1  are pairwise linearly independent directions in dR , mff ,...,1  are 

arbitrarily behaved univariate functions. Then there exist continuous functions 

RRg k : , mk ,1 , and a polynomial  xP  of degree at most 1m  such that 
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     xxax PgF
m

k

k
k  

1

.                                          (14)  

Corollary 1 (R.Aliev, V.İsmailov  [19]). Assume a function    ns RCF   is of 

the form (13). Then there exist functions   RCg s
k  , mk ,1 , and a 

polynomial  xP  of degree at most 1m  such that (14) holds. 

Corollary 2 (R.Aliev, V.İsmailov  [19]). Assume a function    2RCF s  is of 

the form (13). Then there exist functions   RCg s
k  , mk ,1  such that 

   



m

k

k
kgF

1

xax . 

In this section we give a partial solution posted problem for generalized 

ridge function representation. 

Theorem 4. Assume a function   3RCF m  is of the form 

    



m

k

kk
kfF

1

, xbxax ,    3Rx .                            (15) 

Then there exist functions   21 RCgk  , mk ,1 , such that 

    



m

k

kk
kgF

1

, xbxax ,    3Rx .                              (16) 

Proof of theorem 4. Let the function   3RCF m  is of the form (15). Then 

it follows from Theorem 2 that 

  0
...1





x

m

m

ll

F
 

for any 3Rx , where 3Rlk   is a unit vector, perpendicular to the vectors k
a  

and k
b , mk ,1 . Then from the proof of the sufficiency of Theorem 2 it is clear 

that there exist continuously differentiable functions RRgk 2: , mk ,1 , such 

that (16) is satisfied. This completes the proof of the theorem. 
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