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Abstract 

In this paper, we find a condition under which the smooth trivariate function can be 

represented  by sums of generalized ridge functions and give a partial solution of the 

problem, posted by A.Pinkus in his monograph “Ridge Functions”. 
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1. Introduction 

A ridge function is any multivariate function RRF n :  of the form 
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     nnxaxaxaffF   ...2211xax , 

where   n
n Rххх  ,...,, 21x ,    0\,...,, 21

n
n Raaa a  is a fixed vector 

(direction) and RRf :  is a univariate function. These functions arise naturally 

in various  fields. They arise in computerized tomography (see: [1, 2]), statistics 

(see: [3, 4]), data analysis (see: [5, 6]) and neural networks (see: [7, 8]). These 

functions are also used in modern approximation theory as an effective tool for 

approximating multivariate functions (see: [9, 10]). We refer the reader to the 

monographs of A.Pinkus [11] and V.Ismailov [12] for a detailed and systematic 

study of ridge functions. 

One of the basic problems concerning the approximation by sums of ridge 

functions is the problem of the representability of a given multivariate function F  

by sums of ridge functions. That is, assume we are given a multivariate function 

RRF n : , and fixed pairwise linearly independent vectors dk Ra , mk ,1 . 

It is required to find a condition under which the function F  can be represented 

in the form 

   



m

k

k
kfF

1

хаx , 

where RRf k : , mk ,1  are the univariate functions. This problem has a 

simple solution if the dimension of the space is 2n  and a given function 

 yxF ,  has partial derivatives up to m -th order. For the representation of the 

function  yxF ,  in the form 

   



m

k
kkk ybxafyxF

1

,  

it is necessary and sufficient that 

0
1





















m

k
kk F

y
a

x
b . 

In the case of more than two variables, this condition changes slightly. 

Theorem 1 (P.Diaconis, M.Shahshahani [13]). Let m
аа ,...,1  be pairwise 

linearly independent vectors in nR . Let kH  denote the hyperplane 
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 0:  knR аcc , mk ,1 . Then a function    nm RCF   can be represented 

in the form 

     ххаx 1
1




  m

m

k

k
k PfF , 

where  х1mP  is a polynomial of degree less than m , if and only if 

  0
1 1


















 
 

m

k

n

s s

k
s f

x
с  

for all vectors   kk
n

kk Hcc  ,...,
1

c , mk ,1 . 

Remark 1. There are examples showing that one cannot simply dispense 

with the polynomial  х1mP  in the above theorem. 

 A multivariate function RRF n :  of the form 

   xaxax 
d

fF ,...,1
 

is called a generalized ridge function, where ni Ra , di ,1  are fixed linearly 

independent vectors (directions), nd 1 , and f  is a real-valued function 

defined on dR . For 1d , generalized ridge function reduces to a ridge function. 

In this paper, we find a condition under which the smooth trivariate 

function  321 ,, xxxF  can be represented  by sums of generalized ridge functions 

and give a partial solution of the problem, posted by A.Pinkus in his monograph 

“Ridge Functions”. 

 

2. Main results 

 

Definition 1. Let  d
aа ,...,1  and  d

bb ,...,1 , nd 1 , be linear 

independent vector systems  in nR . If 

   dd spanspan bbaа ,...,,..., 11   

then the systems  d
aа ,...,1  and  d

bb ,...,1  are called eqiavalent, otherwise, that 

is, if 
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   dd spanspan bbaа ,...,,..., 11  , 

then the systems  d
aа ,...,1  and  d

bb ,...,1  are called non-eqiavalent. 

Remark 2. Obviously, if the systems  d
aа ,...,1  and  d

bb ,...,1  are 

eqiavalent, then any generalized ridge function of the form 

   xaxax 
d

fF ,...,1
 also has the form    xbxbx 

d
gF ,...,1

. Therefore, 

when defining a generalized ridge function, without loss of generality, we can 

assume that the vectors d
aа ,...,1  are unit and mutually perpendicular. 

Let's consider the following problem: assume we are given a multivariate 

function RRF n : , and fixed pairwise non-eqiavalent vector systems 

    d,11,1 ,...,aа ,...,     dmm ,1, ,...,aа  in nR . It is required to find a condition 

under which the function F  can be represented in the form 

       



m

k

dkk
kfF

1

,1, ,..., xaxax , 

where RRf d
k : , mk ,1  are the real-valued functions. 

In this paper we give a solution to this problem in the case of 3n , 2d . 

Theorem 2. Let  11 ,bа ,...,  mm
ba ,  pairwise non-eqiavalent vector 

systems in 3R . Then the function   3RCF m  can be represented in the form 

    



m

k

kk
kfF

1

, xbxax ,    3Rx ,                                 (1) 

if and only if 

  0
...1





x

m

m

ll

F
,   3Rx ,                                         (2) 

where 3Rlk   is a unit vector, perpendicular to the vectors k
a  and k

b , mk ,1 . 

At first, we prove the auxiliary lemma. 

Lemma 1. Let a  and b  any linearly independent vectors in 3R  and the 

vector 3Rl  is not perpendicular to the vector space  ba,span . Then for any 
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function      21, RCvu   there exist a continuously differentiable 

generalized ridge function of the form    xbxax  ,f  such that 

   xbxax 



,

l
                                             (3) 

for any 3Rx . 

Proof of Lemma 1. It follows from Remark 2 that without loss of generality, 

we can assume that the vectors a  and b  are unit and perpendicular. Denote by c  

the unit vector, perpendicular to the vectors a  and b . Let 

cba  l . 

As the vector 3Rl  is not perpendicular to the vector space  ba,span , 

then 

022   . 

Denote 

  

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

 0
22

2
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2

22
,

1
dt

tt ,  3Rx . 

It follows from the equations 

   






xbxax

a
,

22

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1
dtts

v
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u
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c
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where 
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 
22

2

1 ,









xbxa
x

t
ts ,      

22

2

2 ,









xbxa
x

t
ts , 

that 

         xbxax
c

x
b

x
a

x 


















,

l
. 

On the other side, it follows from   0



x

c
 that the function   is of the 

form    xbxax  ,f . This completes the proof of the lemma. 

Proof of Theorem 2. Necessity. Let the function   3RCF m  is of the 

form (1). For any 3Rx  and 3Rh  we denote by  xh F  the increment 

     xhxxh FFF   

of a function F . Then it follows from (1) that for any 3Rx  and for any 

Rtt m ,...,1  

  0...
2211

  xF
mm ltltlt ,                                           (4) 

where 3Rlk   is a unit vector, perpendicular to the vectors k
a  and k

b , mk ,1 . 

It follows from (4) that for any 3Rx  

 
 

0
...

...
lim

... 210,...,01

2211

1









 

 m

ltltlt

ttm

m

ttt

F

ll

F mm

m

x
x . 

Sufficiency. Let the function   3RCF m  satisfy condition (2) for any 

3Rx . Let us write equation (2) in the form 

  0
...2

1

1






















 

x
m

m

ll

F

д
.                                               (5) 

It follows from (5) that the partial derivative 
m

m

ll

F



 

...2

1

 of the function F  

independent of the direction 1l . Therefore there exist a function RR 2
1 :  

such that 
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   xbxax 


 
11

1
2

1

,
...


m

m

ll

F
,  3Rx .                                 (6) 

From condition   3RCF m  we obtain that   21
1 RC . Now let us 

write equation (6) in the form 

   xbxax 




















 
11

1
3

2

2

,
...


m

m

ll

F

д
,  3Rx .                             (7) 

It follows from lemma 1 that there exists a continuously differentiable 

generalized ridge function of the form 

   xbxax  11
11 ,g                                               (8) 

such that 

   xbxax 


 11
1

2

1 ,
l

,  3Rx .                                  (9) 

It follows from (7) and (9) that for any 3Rx  

  0
...

1
3

2

2























 

x
m

m

ll

F

д
. 

Then the function 1
3

2

...




 

m

m

ll

F
 independent of the direction 2l . 

Therefore there exist a function RR 2
2 :  such that 

     xbxaxx 


 
22

21
3

2

,
...


m

m

ll

F
,  3Rx .                      (10) 

Since the functions 
m

m

ll

F



 

...3

2

 and 1  are continuously differentiable, then 

we get that the function 2  also continuously differentiable in 2R . It follows 

from (8) and (10) that 

     xbxaxbxax 


 
22

2
11

1
3

2

,,
...

g
ll

F

m

m

,  3Rx . 

Continuing the above process, until it reaches the function F , we obtain 
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the desired result. This completes the proof of the theorem. 

 

3. The smoothness problem in generalized ridge function representation 

 

Assume we are given a function RRF n :  of the form 

       



m

k

dkk
kfF

1

,1, ,..., xaxax ,                                 (11) 

where     d,11,1 ,...,aа ,...,     dmm ,1, ,...,aа  are fixed pairwise non-eqiavalent 

vector systems  in nR  and RRf d
k : , mk ,1  are the real-valued functions. 

Assume, in addition, that F  is of a certain smoothness class, that is,    ns RCF 

, where 0s  (with the convention that      nn RCRC 0 ). What can we say 

about the smoothness of the kf ? Do the kf  necessarily inherit all the 

smoothness properties of the F ? 

If 1d  and 1m  or 2m  the answer is yes (see [12]). If 1d  and 3m  

the picture drastically changes. For 3m , there are smooth functions which 

decompose into sums of very badly behaved ridge functions. For example, if 1h  be 

any non linear solution of the Cauchy Functional Equation 

     yhxhyxh  , 

then the zero function can be represented as 

     yxhyhxh  110 .                                       (12) 

Note that the functions involved in (12) are bivariate ridge functions with 

the directions (1,0), (0,1) and (1,1), respectively. This example shows that for 

smoothness of the representation  (11) one must impose additional conditions on 

the representing functions kf , mk ,1 . 

In case 1d  it was first proved by M.Buhmann and A.Pinkus [14] that if in 

(11)    ns RCF  , 1ms  and  RLf
lock
1  for each k , then   RCf s

k   for 

mk ,1 . Later, A.Pinkus [15] generalized extensively this result. He solved this 
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problem for any  Zs , while imposing weaker conditions on the functions kf . 

In case 2d  the situation is slightly more problematic. Consider, for 

example, the case 2d , 3n , 2m ,    0,0,11,1 а ,    0,1,02,1 а , 

   0,1,01,2 а ,    1,0,02,2 а . Thus 

     322211321 ,,,, xxfxxfxxxF  . 

Setting    2211 , xgxxf   and    2322 , xgxxf   for any arbitrary 

univariate function g , we have 

   322211 ,,0 xxfxxf  , 

and yet 1f  and 2f  do not exhibit any of the smoothness properties of the left-

hand side of this equation. 

Now consider the following natural and interesting question. Assume we 

are given a function    ns RCF   of the form (11). Is it true that there will always 

exist   ds
k RCg  , mk ,1  such that 

       



m

k

dkk
kgF

1

,1, ,..., xaxax ? 

This question was posed in M.Buhmann and A.Pinkus [14] for ridge function 

representation and Pinkus [11] for generalized ridge function representation. In 

[17, 18, 19], the authors gave a partial solution to the above representation 

problem for ridge function representation. In [19], this problem for ridge function 

representation is solved up to a multivariate polynomial:  

 Theorem 3 (R.Aliev, V.İsmailov  [19]). Assume a function  nRCF   is of 

the form  

   



m

k

k
kfF

1

xax ,                                                 (13) 

where m
аа ,...,1  are pairwise linearly independent directions in dR , mff ,...,1  are 

arbitrarily behaved univariate functions. Then there exist continuous functions 

RRg k : , mk ,1 , and a polynomial  xP  of degree at most 1m  such that 
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     xxax PgF
m

k

k
k  

1

.                                          (14)  

Corollary 1 (R.Aliev, V.İsmailov  [19]). Assume a function    ns RCF   is of 

the form (13). Then there exist functions   RCg s
k  , mk ,1 , and a 

polynomial  xP  of degree at most 1m  such that (14) holds. 

Corollary 2 (R.Aliev, V.İsmailov  [19]). Assume a function    2RCF s  is of 

the form (13). Then there exist functions   RCg s
k  , mk ,1  such that 

   



m

k

k
kgF

1

xax . 

In this section we give a partial solution posted problem for generalized 

ridge function representation. 

Theorem 4. Assume a function   3RCF m  is of the form 

    



m

k

kk
kfF

1

, xbxax ,    3Rx .                            (15) 

Then there exist functions   21 RCgk  , mk ,1 , such that 

    



m

k

kk
kgF

1

, xbxax ,    3Rx .                              (16) 

Proof of theorem 4. Let the function   3RCF m  is of the form (15). Then 

it follows from Theorem 2 that 

  0
...1





x

m

m

ll

F
 

for any 3Rx , where 3Rlk   is a unit vector, perpendicular to the vectors k
a  

and k
b , mk ,1 . Then from the proof of the sufficiency of Theorem 2 it is clear 

that there exist continuously differentiable functions RRgk 2: , mk ,1 , such 

that (16) is satisfied. This completes the proof of the theorem. 



Rashid Aliev, Fidan Isgandarli/Journal of Mathematics & Computer Sciences v 1 (1), ( 2024), 35 

35 

 

References 

[1] Logan BF, Shepp LA. Optimal reconstruction of a function from its 

projections. Duke Math J 1975, v. 42, p. 645-659. 

[2] Natterer F. The Mathematics of Computerized Tomography. Wiley, New 

York; 1986. 

[3] Friedman JH, Stuetzle W. Projection pursuit regression. J Amer Statist 

Assoc 1981, v. 76, p. 817-823. 

[4] Candes EJ. Ridgelets: estimating with ridge functions. Ann Stat 2003, v. 

31, p.1561-1599. 

[5] Cohen A, Daubechies I, DeVore R, Kerkyacharian G, Picard D. Capturing 

ridge functions in high dimensions from point queries. Constr Approx 

2012, v.35(2), p. 225-243. 

[6] Doerr B, Mayer S. The recovery of ridge functions on the hypercube 

suffers from the curse of dimensionality. J Complexity 2021, v. 63,  no. 

101521, 29 pp. 

[7] Pinkus A. Approximation theory of the MLP model in neural networks. 

Acta Numerica 1999, v.8, p. 143-195. 

[8] Ismailov VE. Computing the approximation error for neural networks 

with weights varying on fixed directions. Numer Funct Anal Optim 2019, 

v. 40(12), p. 1395-1409. 

[9] Gordon Y, Maiorov V, Meyer M, Reisner S. On the best approximation by 

ridge functions in the uniform norm. Constr Approx 2002, v. 18, p. 61-85. 

[10] Ismailov VE. A review of some results on ridge function approximation. 

Azerb J Math 2013, v. 3(1), p. 3-51. 

[11] Pinkus A. Ridge functions. Cambridge Tracts in Mathematics, 205. 

Cambridge University Press; 2015. 

[12] Ismailov VE. Ridge Functions and Applications in Neural Networks. AMS 

book series: Mathematical surveys and monographs, vol. 263; 2021. 

[13] Diaconis P, Shahshahani M. On nonlinear functions of linear 

combinations. SIAM J Sci Stat Comput 1984, v. 5, p. 175-191. 

[14] Buhmann MD, Pinkus A. Identifying linear combinations of ridge 

functions. Adv Appl Math 1999, v. 22, p. 103-118. 



 Rashid Aliev, Fidan Isgandarli/Journal of Mathematics & Computer Sciences v. 1 (1), ( 2024),  

36 

 

[15] Pinkus A. Smoothness and uniqueness in ridge function representation. 

Indag Math 2013, v. 24(4), p. 725-738. 

[16] Aliev RA, Ismailov VE. On a smoothness problem in ridge function 

representation. Adv Appl Math 2016, v. 73, p. 154-169. 

[17] Kuleshov AA. On some properties of smooth sums of ridge functions (in 

Russian). Tr Mat Inst Steklova 2016, v. 294,  p. 99-104. 

[18] Aliev RA, Asgarova AA, Ismailov VE. A note on continuous sums of ridge 

functions. J Approx Theory 2019, v. 237, p. 210-221. 

[19] Aliev RA, Ismailov VE. A representation problem for smooth sums of ridge 

functions. J Approx Theory 2020, v. 257, no. 105448, 13 pp. 

 


