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Abstract 

In this paper we consider the certain nonlinear boundary value problem for ordinary 
differential equations of fourth order which contain some parameter. The values of this 
parameter are determined at which nodal solutions to the problem under consideration 
exist. 
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1. Introduction 

Consider the following nonlinear problem 
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0,=sin(0))(cos(0)  ypy 
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0,=sin(0)cos(0)  Tyy 
  

(3) 

0,=sin)()(cos)(  lyply 
  

(4) 

  
0,=sin)(cos)(  lTyly                                  

(5) 

where  is a real parameter, ,)( yqypTy  the functions )(xp and )(xr are 

positive on ,][0, l )(xq is a nonnegative on ,][0, l ],,0[ lACp  ],,0[ lACq  

,],0[ lCr R and  ,,, ].2,0[   Moreover, the real-valued function 

)(RCf   and there exist positive constants 0f  and f  such that  
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 Nonlinear boundary value problems for ordinary differential equations 

play an important role in modern mathematics, since they describe various 

processes in physics, mechanics, biology and other areas of natural science 

(see, for example, [3-5, 13]). Note that problem (1.1)-(1.5) arises when 

studying the bending of an inhomogeneous Euler-Bernoulli beam, in the 

cross sections of which a longitudinal force acts, at the boundary points of 

which various conditions are imposed. 

 The study of nodal solutions of nonlinear Sturm-Liouville problems and 

nonlinear problems for ordinary differential equations of fourth order has 

been the subject of many papers (see, for example, [1-3, 6-12, 14, 15] and 

their bibliography). It should be noted that in these works nonlinear 

boundary value problems of the fourth order were considered only in 

special cases and the existence of positive and negative solutions was 

established in them. 

 In this paper we consider a more general case and prove the existence 

of solutions having any number of simple zeros in the interval. 

2. Preliminary  

 By .).( cb we denote the set of boundary conditions (2)-(5). Consider the 

linear problem  









.)..(

,0),()())()(())()((

cby

lxxyxxyxqxyxp 

   
 (7) 
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 Problem (7) was considered in the paper [3], where it was shown that 

the eigenvalues of this problem are nonnegative, simple and form an 

infinitely increasing sequence .}{ 1



kk  Moreover, for each k  the 

eigenfunction )(xyk corresponding to the eigenvalue k  has exactly 1k

simple nodal zeros in the interval ).,0( l  Note that the eigenfunctions of 

problem (7) also have other important properties that are possessed by 

functions from the classes ESk 
 constructed in paper [1], where E  is a 

Banach space .).(],0[3 cblC  with the norm .|)(|max||||,||||||||
},0[

3

0

)(

3 xyyyy
lxi

i


   

 Alongside the spectral problem we shall consider the following 

nonlinear eigenvalue problem  









.),.(

,0),,,,,,()()())()(())()((

cby

lxyyyyxgxyxxyxqxyxp 

  
 (8) 

where the nonlinear term g  is a real-valued continuous function on 
5],0[ Rl   and satisfies the following condition: for every bounded interval 

,  

|)||||||(|),,,,,( wvsyowvsyxg   as ,0||||||||  wvsy   (9) 

or  

|)||||||(|),,,,,( wvsyowvsyxg   as ,||||||||  wvsy   (10) 

uniformly in .],0[),(  lx   

 Global bifurcation of nontrivial solutions of problem (8) was 

considered in [1] in the case when condition (9) is satisfied, in [2] in the 

case when condition (10) is satisfied. Note that when condition (9) is 

satisfied, then the bifurcation from the line of trivial solutions is studied; 

when condition (10) is satisfied, then the bifurcation from the line }{R is 

studied. 

 According to [1, Theorem 1.1] and [2, Theorem 3.1], we have the 

following global bifurcation results for problem (8) under conditions (9) and 

(10), respectively. 

 Theorem A. Let condition (9) be satisfied. Then for each k  and 
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each },{   there exists a continuum 
kC  of nontrivial solutions of 

problem (8) which meets ),0,( k  lies in 
kSR  and is unbounded in .ER   

 Theorem B. Let condition (10) be satisfied. Then for each k  and 

each },{   there exists a continuum 
kD  of nontrivial solutions of 

problem (8) which meets ),( k  and has the following properties: (i) there 

exists a neighbourhood kQ  of ),( k  in ER  such that ;\ 
kkk SRQD  (ii) 

either 
kD meets  

kD  through  
 kSR  for some ),,(),(  kk   or 

kD  meets 

)0,(  for some ,R  or the projection of 
kD  onto }0{R  is unbounded. 

 Remark 1. If condition (9) holds, then by theorem A the set 
kC  is 

unbounded in ,ER and consequently, either 
kC  meets ),(   for some 

,R  or the projection of the set 
kC  onto }0{R  is unbounded. 

3. Existence of nodal solutions to problem (1)-(5)  

 This section is devoted to finding the interval of the parameter ,  in 

which there are nodal solutions to problem (1)-(5), or more precisely, there 

are solutions contained in the classes }.,{,,   kSk  

 Lemma 1. The following relations hold: 

|)||||||(|)(0 wvsyoyg   as ,0||||||||  wvsy    (11) 

and 

|)||||||(|)( wvsyoyg   as .||||||||  wvsy    (12) 

Proof. By (6) for the function f we have the following representations 

 )()( 00 ygyfyf   and ),()( ygyfyf      (13) 

where 

0
)(

lim 0

0||


 y

yg

y
 and .0

)(
lim
||



 y

yg

y
    (14) 

 It follows from (14) that for any sufficiently small 0  there exist a 

sufficiently small 0  and a sufficiently large 0 such that  


||

|)(| 0

y

yg
 for any ,||0,  yRy    (15) 

and  
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

||

|)(|

y

yg
 for any .||,  yRy    (16)  

Then by (15) we have  


 ||||||||

|)(| 0

wvsy

yg
 for any .||||,  syRy    (17) 

In view of (13) we get 

.),()( 00 Ryygyfyfyg       (18) 

By condition )()( RCyg   there exits positive constant   such that  

 |)(| yg for any ,Ry .|| y    (19)  

 Let  1  is chosen so that the inequality 



 
 1       (20) 

holds.  
 Now let .|||||||| 1 wvsy  Then by (16), (19) and (20) we obtain 
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||||||||
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y

yg

wvsy

yg
 for any ,||,  yRy    (211) 






 







1||||||||

|)(|

wvsy

yg
 for any .||,  yRy   (212) 

 Thus, relations (11) and (12) follow directly from (17) and (21), 

respectively. The proof of this lemma is complete. 

 Consider the following eigenvalue problem  









.)..(

,0)),(()()()())()(())()(( 00

cby

lxxygxxyfxxyxqxyxp 
  (22) 

It is obvious that the eigenvalues ,
~

k ,k of the linear problem  









.)..(

,0,)()())()(())()(( 0

cby

lxxyfxxyxqxyxp 

  
 (23) 

as represented as follows: 

,
~

0f

k
k




  .k      (24) 

By (13) we have  

),()( 00 ygyfyfyg        (25) 
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and consequently, (22) can be rewritten in the following equivalent form 










.)..(

,0)),(()()()()())()(())()(( 00

cby

lxxygxxyxfffxyxqxyxp 
 (26) 

Note that the eigenvalues ,ˆ
k ,k of the linear problem obtaining 

from (26) by setting 0g has the form 

,1ˆ

00

 

f

f

f

k
k




 .k     (27) 

 By Lemma 1, Remark 1, [14, Theorem 3.3] and representations (24), 

(27) it follows from Theorems A and B that the following global bifurcation 

results hold for the nonlinear eigenvalue problem (22). 

 Theorem 1. For each k  and each },{   there exists a 

continuum 
kC

~
 of nontrivial solutions of problem (22) which meets ,0,

0














f

k




 

lies in 
kSR  and either 

kC
~

 meets ),(   for some ,R  or the projection of 

kC

~
 onto }0{R  is unbounded.  

 Theorem 2. For each k  and each },{   there exists a 

continuum 
kD

~
 of nontrivial solutions of problem (22) which meets 

,,1
00














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f

f

f

k




 lies in 

kSR  and either 
kD

~
 meets )0,(  for some ,R  

or the projection of 
kD

~
 onto }0{R  is unbounded. 

 The following result is important in what follows. 

 Theorem 3. The projections of sets 
kC

~
 and 

kD
~

onto }0{R  are 

bounded.  

 Proof. We will prove the statement of the theorem for the set ,
~

kC

since for the set 
kD

~
 the proof can be carried out similarly. 

Suppose the opposite, i.e., let for some k  the set 
kC

~
 be 

unbounded. Then there exists  knnn C
~

)},{( 1 


  such that 

.lim 


n
n


    

 (28) 

 Hence we have the following relations: 
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 In view of (30) by (29) we get 
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
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 Let 0 be fixed. By (16) it follows from (25) that  


||

|)(| 0

y

yg
  || 0ff  for any .||,  yRy    (32) 

 It is obvious that the function 
y

yg )(0

 is continuous on },||:{   yy  

and consequently, there is a positive constant 0,2  such that  

 ,2
0

||

|)(|


y

yg
 for any ,Ry .||   y     (33) 

 Let  

}.,||max{ ,20,3   kffk    

Then it follows from (15), (32) and (33) that  

 ,3

0

||

|)(|


y

yg
 for any ,Ry .0y     (34) 

Hence in view of (34), by Lemma 4.1 and Remark 4.1, from (31) we 

obtain  

 3||  kn  for any ,n  

which contradict relation (28). The proof of this theorem is complete. 

 It follows from Theorems 1-3 and [3, Theorem 3.3] the following 

result. 

 Corollary 1. For each k  and each },{   the relation 

.
~~ 

kk DC       (35) 

 The following theorem is the main result of this paper. 
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 Theorem 4. Let for some k  the following condition holds: 




hh

kk 




0

 or .
0hh

kk 





    
(36) 

Then for each },{   there exist a solution k  of problem (1)-(3) 

such that k
has exactly 1k simple nodal zeros in the interval ),,0( l or 

more precisely . kk S  

Proof. If ,0k  then the result is trivial. Indeed, in this case 1k  and 

,0  consequently, problem (1)-(5) has two solution 

1  and 

1  which 

have no zeros in the interval ),0( l  (see [3]). 

 Now let  

0k  and 



ff

kk 




0

 for some .k    (37) 

 Then it follows from (37) that  
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
f

k





    
 (38) 

 
 

Moreover, in view of (38) by (37) we get  
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 By (38) and (39) we have the following relation 

.1
000 f

f

ff

kk 








    
(40) 

 It follows from Theorems 1-3 and Corollary 1 that ,
~~ 

kkk SRDC  the 

set 
kC

~
 is connected and by [14, Theorem 3.3] this set meets both points 














0,

0f

k and .,1
00














 

f

f

f

k  Therefore, by (40) the set 
kC

~
 crosses the 

hyperplane E}1{  in the space ,ER  and consequently, for each },{   
there exists  kk S  which is a solution to problem (22) for ,1  i.e., this 

function is a solution of original problem (1)-(5).  

 Similarly, it can be shown that the statement of this theorem holds in 
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the case where the second condition of (36) is satisfied. The proof of the 

theorem is complete. 
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