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Abstract 

In the present paper, we introduced the concept of the modulus of continuity of 
the functions from the weak Lebesgue spaces, studied its properties and found a criterion 
for convergence to zero of the modulus of continuity of the function from the weak 
Lebesgue spaces. 
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1. Introduction 

Let  TLp ,  p1 , the space of all measurable 2 -periodic functions 

with finite  TLp -norm  
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of all continuous 2 -periodic functions with uniform norm  xff
Tx

max , 

where   ,T ; let  pn fE be the best approximation of a function f  in the 

metric  TLp  by trigonometric polynomials of order at most n , Zn ; and let 
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p

h
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sup, , 0 . 

 It was proved by D. Jackson that (see [1]) if  TLf p ,  p1 , then 
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where c  is an absolute constant. 

 This central theorem gave impetus to the intensive development of 

approximation theory in the spaces pL . Further, for the development of the 

theory of approximation in other function spaces, an analogue of Jackson’s 

theorem in these spaces was obtained (see [2–9] and many references therein). 

 Weak Lebesgue spaces are function spaces which are closely related to 

pL  spaces. The weak Lebesgue spaces meets in many areas of mathematics. For 

example, the conjugate functions of Lebesgue integrable functions belong to the 

weak Lebesgue space (see [10]). The difficulty of working with the weak Lebesgue 

spaces is that the weak Lebesgue spaces is not a normed space. Moreover, 

infinitely differentiable (even continuous) functions are not dense in this spaces. 

Due to this, the theory of approximation was not produced in this space. In the 

present paper, we introduced the concept of the modulus of continuity of the 

functions from the weak Lebesgue spaces, studied its properties and found a 

criterion for convergence to zero of the modulus of continuity of the function 

from the weak Lebesgue spaces. 

2. Weak Lebesgue spaces 

 Let  ,X  be a measure space and f  be a measurable function on 

 ,X . The distribution function of f  is the function fD  defined on  ,0  as 

follows: 
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       xfXxD f : . 

It follows from definition that fD  is a decreasing function of   (not 

necessarily strictly). 

 Let  ,X  be a measure space, f  and g  be a measurable functions on 

 ,X , then the following properties holds: 

1) if fg    -a.e., then fg DD  ; 

2)  


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



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c
DD fcf


  for any  0\Rc  and 0 ; 

3)      2121  gfgf DDD   for any 0, 21  ; 

4)      2121  gfgf DDD   for any 0, 21  . 

For more details on distribution function see ([11]). 

Let  ,X  be a measurable space and  p0 . Let us denote by 

  XL p ,  the set of functions f , satisfying the condition 
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Proposition 1 [12]. Let   XLf p  ,  with  p0 . Then 
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Definition 1. For  p0  the set of functions   XL p ,  with bounded 

quasi-norm 
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is called a weak pL  -space and is denoted by  XWLp . 

Note that for any  XWLp  the inequality 
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shows that (1) is indeed a quasi-norm. 

It follows from Chebyshev inequality that for any  p0  

   XWLXL pp   

and for any  XLf p  

   XWLXL pp
ff  . 

Modulus of continuity of functions from a weak Lebesgue spaces and its 

properties 

Let   RbaX  ,  and m  is Lebesgue measure on  ba, . For any 
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where in the second case the function f  is assumed to be extended by 

periodicity with period ab  . The quantities  pf  ;weak  and  pf  ;weak
  are 

called modulus of continuity of the function   baWLf p ,  (  pf  ;weak
  is the 

periodic modulus of continuity). 

We note some properties of the modulus of continuity  pf  ;weak . 

Property 1. For every   baWLf p , , the modulus of continuity 
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 pf  ;weak  is a nondecreasing function. 

Property 2. For every   baWLf p ,  and ab0  
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Property 3. For every   baWLgf p ,,   and ab0  
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Property 4. If   baWLf p , , then for every 0, 21  , ab  21   
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Property 5. If   baWLf p , , then for every Nk  and 
k

ab 
0  

   p
p

p fkkf  ;; weak
11

weak
 . 

Property 1 is obviously, properties 2, 3, and 4 follow from inequality (2), and 

property 5 follows from property 4. Indeed, if 1k , then property 5 is obviously. 

If property 5 holds for some Nk , then it follows from property 4 that 
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and this means that the property 5 holds for 1k . Then it follows from 

mathematical induction that the property 5 holds for every Nk . 

But the equation 
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  0;lim weak
0




pf 


                                           (3) 

overall not satisfied. For example, the function   pxxf 1  belongs to the class 

of functions   1,0pWL , but for any 0  we have   1;weak pf  , and, 

therefore, equation (3) does not holds for this function. 

Theorem 1. The modulus of continuity of the function   baWLf p ,  

satisfies equation (3) if and only if 

     0:,lim
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p
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Proof. Necessity. Let the equation (3) holds. Let us prove that the equation 

(4) holds. Assume that the equation (4) does not hold. Then 
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This implies the estimate 
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where  nm   denotes the Lebesgue measure of the set n . 

 It follows from inclusions 
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due to inequality (5) we get that 
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1nn  such that 


n
n

hlim  and 

for every Nn  

       0
1

:,  
p

nnnn xfhxfhbaxm .                      (9) 

It follows from inclusion 

       nnn xfhxfhbax :,  
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       


















2

:,
2

:, n
nn

n
n hxfhbaxxfhbax


  

that 

          









2

:,2:, n
nnn xfbaxmxfhxfhbaxm


 . 

It follows from here and from (9) that 

   
p

n

nxfbaxm 






















 0

2

1

2
:, .                               (10) 

Inequalities (4) and (10) show that the sequence  
1nn  is bounded. 

Therefore the sequence  
1nn  has a convergent subsequence  

1knk
 . Let 

n
n




 lim0 . 

It follows from (9) that 

 
0

1

0
0 




p
ab


 . 

Therefore there exists Nk 0  that for every 0kk   

0
0 2
2





kn . 

Then from inequality (9) we obtain that for any 0kk   

      









2

:, 0xfhxfhbaxm
kk nn  

      
pp

n
nnn

k
kkk

xfhxfhbaxm 


























0

00

2
:,








 .            (11) 

 It follows from (4) that there exist 00 M  such that 

    
p

Mxfbaxm 











0

0
0

24

1
:,




.                                  (12) 

Denote 

   xfxf 1 ,  for    0Mxf  ;    01 xf ,  for    0Mxf  , 
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  02 xf ,  for    0Mxf  ;     xfxf 2 ,  for    0Mxf  . 

Then for every  bax ,  we have      xfxfxf 21  . It follows from the 

inclusion 

      









2

:, 0xfhxfhbax
kk nn  

           


















4

:,
4

:, 00
1


xfhxfhbaxxfhxfhbax

kkkk nnnn 

 

and from (12) that 

      









2

:, 0xfhxfhbaxm
kk nn  

     
p

nn xfhxfhbaxm
kk 





















0

00
1

22

1

4
:,




.           (13) 

Then it follows from (11) and (13) that for every 0kk   

     
p

nn xfhxfhbaxm
kk 





















0

00
1

22

1

4
:,




.             (14) 

Since the function  xf1  is bounded, then it is Lebesgue integrable on  ba, .  

Then it follows from Lebesgue’s theorem that 

    0lim 11
0






hb

ah
dxxfhxf . 

Therefore, 

    0lim 11 





kn

k

hb

a
n

k
dxxfhxf .                                    (15) 

On the other hand, it follows from (14) that for every 0kk   

    


kn

k

hb

a
n dxxfhxf 11  

     
p

nn xfhxfhbaxm
kk 





















0

000
1

0

284
:,

4 


. 
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But this is impossible due to (15). The resulting contradiction proves the 

validity of equality (3). This completed the proof of the theorem. 

Denote by   baWAp ,  the class of functions   baWLf p ,  satisfying 

condition (4). Theorem 1 shows that in the class of functions   baWAp ,  the 

modulus of continuity  pf  ;weak  satisfies condition (3). 

Note that properties 1-5 and theorem 1 also holds for the periodic modulus 

of continuity  pf  ;weak
 . 
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