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Abstract 

In this work we study the second order differential operator with integral boundary 
conditions. Under weaker than previously known conditions on the functions 

,2,1),( vxv  asymptotic formulas for eigenvalues and Eigen functions are found 

functions, an estimate of the resolvent was obtained and theorem on completeness and 

minimality of eigenfunctions in some subspace of space ,1),1,0(  pLp
 codimension 

2.  
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1. Introduction.  

Consider the linear differential expression 

                                        )1,0(,)()(  xyxqyyl                                           (1) 

and boundary conditions 

                                     0)()( 21  yUyU                                                   (2) 
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where )(xq  is a complex-valued function summable on  1,0  and  )(1 yU  and 

)(2 yU  – are the corresponding boundary forms. Differential expression (1) and 

boundary conditions (2) generate a differential operator L  with a domain of 

definition )(LD  in some functional space .X  We will be interested in the problem 

of the behavior of eigenvalues and eigenfunctions of this differential operator. 

Such a problem in the case of regular boundary conditions ,2,1,0)(  vyUv    

has been studied quite well (see [1,2] and the bibliography there). The case of 

irregular, as well as more general regular boundary conditions, when the 

boundary conditions contain some integrals of the function )(xy  and its 

derivatives, was considered in [3-6]. In these works, the spectral properties of the 

corresponding operator were studied (spectrality, eigenfunctions, conjugate 

problem and mainly in the space )1,0(2L ). Let us also note the works [8-10], 

where similar problems were studied in the spaces ).1,0(pL  However, as a rule, 

boundary forms generated an unbounded functional in the space under 

consideration, and in this case the operator has a dense domain of definition, 

which made it possible to construct a conjugate operator or assume the regularity 

of boundary conditions [1,2,4]. Here we will consider integral boundary conditions 

 
1

0

,2,1,0)()()( vdxxyxyU vv                                        (3) 

where )(xv  - are given linearly independent functions belonging to the space  

.1
11

),1,0( 
qp

Lq These conditions are not regular in the sense of Birkhoff [1], 

and there is no corresponding conjugate operator for them. Such conditions were 

used for other purposes in [6, 7]. In [11, 12], problem (1), (3) was studied under 

more stringent conditions on the functions )(xq and )(xv , where the 

asymptotic behavior of eigenvalues and eigenfunctions was found, and the 

theorem on the Riesz basis property of a system of eigenfunctions in )1,0(2L  . 

Note that differential equations with nonlocal conditions of integral form have 

interesting applications in mechanics [13] and in the theory of diffusion processes 
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[14]. 

1. Basic assumptions.  

Let us introduce in the space ,1),1,0(  pLp a differential operator ,L  

corresponding to the differential expression )(yl with the domain of definition

 2,1,0)();1,0()(),1,0()()( 2  vyULylWxyLD vpp  and consider the 

problem of the eigenvalues of this operator 

                              .yLy                                                                         (4) 

Let's put .2   Equation (1) has [1, pg. 58] fundamental system of solutions 

               )),,(1(),(),,(1(),( 2211   xrexyxrexy xixi                    (5) 

where the functions ),( xri  are continuous even for large values of   the 

estimate  2,1,),(  i
c

xr i

i


   is satisfied, uniformly in  .1,0x  

        Regarding the functions ,2,1),( vxv  we will additionally assume that in 

some strip ,Im h   for some  0h  the following relations are satisfied: 
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where .0 vv ba  These relations are satisfied, for example, if the functions

)(),( xqxv ,  are smooth in a small neighborhood of the points 0x  and 1x . 

Moreover, in equalities (6) )1(),0( vvvv      (one of the numbers vv  ,  

can become zero). For functions )1,0()( 1

1Wxv    such expansions are obtained 

using integration by parts and from the Riemann theorem. In addition, from (5) 

and (6) it follows that under the same assumptions the relations are also satisfied  
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where for functions )(vir for large values of   and hIm  the estimate  

)1()( orvi  is satisfied. In what follows we will assume that the condition   

01221   is satisfied. 

2. Asymptotic behavior of eigenvalues.  

 The main result of this point is following theorem: 

        Theorem 1. Let the function )(xq  be summable, and the functions   

,2,1),( vxv be summable with degree ,1
11

, 
qp

q  on the interval [   ] and 

for functions )(xv  the asymptotic representations (6), (7) take place. Then the 

following asymptotic formula for the eigenvalues of the operator L  is valid:  

       )1(okk    

        Proof. To find the eigenvalues of the operator    consider the determinant  

 
)()(

)()(
)(

2212

2111

yUyU

yUyU
  , 

where   )(1 xy and )(2 xy  - are the fundamental system of solutions from (5). The 

determinant  )(  is divided into the sum 

                                 ),()()()()( 3210                           (8) 

where  
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                     (9) 

)(1   is obtained from  )(0   by replacing the second row with the elements 
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,),()(,),()(

1

0

22

1

0

12 
 dxxrexdxxrex xixi    and  )(2  from )(0   by 

replacing the first row with the elements ,),()(

1

0

11 dxxrex xi  

,),()(

1

0

21
 dxxrex xi    finally, )(3   - replacing both lines with the specified 

elements (the first with с ),(1 x   the second with )(2 x ). Let's consider the 

determinant  )(1  By virtue of formulas (6), (7) we have 
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where ,3,2,1),1()(  ioRi     for   and hIm . Thus, in expansion 

(4) the main role as   is played by the term )(0  , therefore, taking into 

account formulas (8), (9) we have 
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where )1()( oR   for    and  hIm . From equality (5) it follows that 

                                ,
)(

))((
1

)(
212212 





  R

ee ii                                                   

and the roots of the equation 0)(    (see. [1, pg. 77]) form the sequence 

)1(okk    for  .0\,01221 Zk   

    

3. Asymptotics of eigenfunctions.  

Let's move on to finding the eigenfunctions of the operator   . As usual [1, p. 84], 

they are searched in the form 
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           (11) 

where    is some normalizing factor to be determined. We have )1(okk      

and )1(),(),1(),( 21 oxroxr kk   . Substituting these expressions into the 

determinant (11) and using formulas (6), we obtain 
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(12) 

Further, taking into account that ),1()1(),1()1( oeoe kiki kk 
   

),1(),1( oeeoee kxixikxixi kk      from (12) we obtain  

                          .
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))1((2 22 


kk
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c


 , from the last equality we get 

).1()( okxcoxxyk    

        Thus it is proven.  

        Theorem 2. Under the conditions of Theorem 1, the following asymptotic 

formulas hold for the eigenfunctions of the operator ).1()(: okxcoxxyL k   . 

4. Completeness of eigenfunctions.  

The operator   constructed in paragraph 2 does not have a dense domain of 

definition in the space )1,0(pL  and therefore the eigenfunctions of the operator 

L  cannot be complete in this space. To eliminate this drawback, consider the 

operator L  not in the entire space )1,0(pL ,but in its closed subspace   

   .2,1,0)(:)1,0()(  vfULxfX vpp  
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It is obvious that codim 2pX   Let us define the operator L  in the space pX  as 

follows: 

 ppp XylXWyLD  )(:)1,0()( 2    and  for ).(:)( ylLyLDy    

The operator L   thus defined has an everywhere dense domain of definition in 

pX   To study the question of completeness of eigenfunctions of the operator L  

in the space pX we construct and estimate the resolvent of the operator L  It is 

known (see [1]) that the Green’s function of the operator IL 2  has the form 
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Consider in the complex   -plane the region    k: , where 

 k - is the set of zeros of the function )(  Let K   denote the region of the 

complex  plane, which is the image of   under the mapping .2    

        Theorem 3. For the resolvent 1)()(  ILLR   of the operator L  in the 

domain K  for large values of    the following estimate is correct: 

                            .)(
2

1




c
LR                                                   (14)                                      

        Proof. It is known [1] that for the derivatives of the functions ),(1 xy  and 

),(2 xy  in the region ,0ScT   where  0Re,0Im:0  S     

asymptotic estimates are valid 
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)),,(1(),()),,(1(),( 4231   xreixyxreixy xixi    

where ,4,3,),(  i
c

xr i

i


    uniformly along  1,0x . From the last relations, 

taking into account (6) for the Wronskian )(W , we have 
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From here, for the functions ),(1 z  and  ),(2 z  we obtain 
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Taking into account formulas (6), as well as the last relations, we estimate )(1 gU  

and )(2 gU : 
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Finally, we replace all the functions included in (13) with their asymptotic 

expressions. Then for x  we have 
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. 

Here we use the notation ).1(][ oaa    Note that if p  belongs to the domain, 

T then 0)Re( i  and therefore there is a number 0m  such that.    

  
 me i  ]1[12 . In addition, in the last determinant all components are 

limited, since all exponents present there in the indicator have a negative real 

part. From what has been said it immediately follows that the estimate  

 1,0,,,),,(  


  xT
c

xG   

from which we directly obtain (14). The case x  is studied similarly. 

        The main result of this point is 

        Theorem 4. The eigen and associated functions of the operator L  form a 

complete and minimal system in the space  pX p 1, . 
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        Proof. Let  L̂ denote the maximal operator generated in the space )1,0(pL   

by differential expression (1), i.e.  )1,0()(),1,0()ˆ( 2

pp LylWyLD  . 

Obviously, L̂  is a bounded operator acting from  )1,0(2

pW   to   (   ). Then from 

the complete continuity of the embedding operator   
 (   )  into )1,0(pL   and 

Theorem 6.29 from [15, p. 187] on an operator with a compact resolvent it 

follows that the operator L  also has a compact resolvent. Consequently, the 

system of eigen and associated functions ky   is minimal in pX , since it has a 

biorthogonal system  kz , which is a system of eigen and associated functions of 

the conjugate operator *L  . 

        Let us prove the completeness of the system  ky . Let it not be complete in 

pX . Then there exists an element ,*

pXg , such that .0,:  gyk k   From this 

we obtain that gLR )( *

  is an entire function of  . On the other hand, from 

estimate (14) it follows that















2

1

* 1
0)()(



 LRLR   and according to 

Liouville’s theorem, this is possible only in the case .)( * constgLR   Then, 

differentiating the latter, we obtain 0)()( *2*  gLRgLR
d

d



    Hence, from 

the uniqueness of gLR )( *

  and therefore )( *2 LR , we find that ,0g  which 

completes the proof of the theorem. 
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