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Abstract 

In this work, the problem of finding the leading coefficient of the second order 

hyperbolic equation with a discontinuous solution is studied. The considered problem is 

reduced to the optimal control problem. The existence of the optimal pair is proved, the 

convergence of the adapted penalty method is shown, and a necessary condition for 

optimality in the form of the variational inequality is derived. 
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1. Introduction 

Inverse problems for partial differential equations are studied by various 

methods, for example, regularization method, quasi-inversion method, quasi-
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solution method, as well [3, 4, 9]. One of these methods is variational method or 

optimization method [3, 4, 6]. Applying this method the considered problem is 

reduced to the problem of finding the minimum of the constructed functional 

with the help of additional information, and the obtained problem is studied with 

the help of the methods of optimal control theory [1, 2, 8]. In this paper, the 

problem of finding the leading coefficient of a two-order hyperbolic equation with 

a discontinuous solution is studied. Thus, the functional is constructed using the 

characteristics of the problem under consideration. The existence of the optimal 

pair that gives a minimum to this functional is proved [7]. Then, a new functional 

adapted to this optimal pair is constructed, the convergence of the adapted 

penalty method is proved, and a necessary condition for optimality is derived in 

the form of a variational inequality. 

 

2. Problem formulation 

 

Let in the cylinder   TQ ,0  the controlled problem is described by 

the following hyperbolic equation 
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Here   is a bounded domain from nR  ( 3n ) with smooth boundary  ; 
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If  V , )(
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for 0),(),(),( 1  TxQCtx  . Such pair u,  is called to be an admissible 

pair.  

We suppose that the set of the admissible pairs is not empty, i.e.   u, .  

Consider the problem of minimizing the following functional in the set of 

possible pairs 
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where )(
6

QLu
d
  is a given function and 0N  is a given positive number. 

3. Existence of the optimal pair in problem (1)-(4), (6)  

Let us now show the existence of an optimal pair for the considered optimal 

control problem. 

Theorem 1. Let the conditions imposed on the data of problem (1)-(4), (6) 

be satisfied. Then there exists an optimal pair  u~,~  in this problem i.e. 
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where  u,  are admissible pairs. 
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From the definition of functional (6) we obtain 
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Thus, using relations 



Hamlet Quliyev, Idrak  Askerov / Journal of Mathematics & Computer Sciences v. 1 (1) (2024)  

102 

 

                    

fu
x

u
x

xt

u
k

n

i
i

k

k

i

k 

























3

1
2

2

)(  ,                                        (10) 

                    
),()0,(

0
xuxu

k
    )()0,(

1
xux

t

u
k 




,  x , 0

k
u ,                      (11)                                                                                                                               

and results from [5. pp. 209-215] we obtain that   
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Here and later we will denote by c  various constants independent of 

estimated quantities and controls.  
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0),(),(),( 1  TxQCtx   . 

Considering relations (13), (14) and (15) we can pass to limit in (16) and (17) 

as k . Then  u~,~  will be an admissible pair.  
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Since the functional ),( uJ   is weakly semi-continuous we get 
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Therefore  u~,~  is an optimal pair. Theorem is proved. 

 

4. Convergence of the adopted penalty method 

Let us write the adopted functional  
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Here u~,~  is a selected optimal pair. 
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Then from (33) in   for  0


  we obtain the integral identity 

                        

   

 













































QQ
d

Q
i

n

i
i

dxdtuudxdtuu

dxdtu
x

x
xt

0~~~

~3)(~

5

2

1
2

2















,          (34) 

for 0
)0,(

,0)0,(),(2 





t

x
xQС


 . 

And from (32) we get 
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Considering the definition above (35) can be written in the form   
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(34) shows that 


  is a weak solution to the problem
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Basing on the result of [5] one can establish the following estimation for 

problem (37)  
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Then if to pass to limit as 0 in problem (25), (26), inequality (36) and 

problem (37) considering (21), (22) we obtain the validity of the theorem. 

Theorem is proved.  

6. Conclusion 

The existence of the optimal pair in the problem of optimal control with the 

leading coefficient of the considered second order hyperbolic equation with a 

discontinuous solution, the convergence of the adapted penalty method is 

proved, and a necessary condition for optimality in the form of a variational 

inequality is derived. 
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