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Abstract 

In this paper, we study the concept of neutrosophic set on the family  EXSS ,  of all 

soft sets over X with the set of parameters E and examine its basic properties. We 

define the concept of neutrosophic topology (cotopology)  on SS(X, E), obtain that each 

neutrosophic topology is a descending family of soft topologies. Later in the paper, we 

introduce the concepts of base and subbase in neutrosophic topological space of soft sets. 
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1. Introduction 

The concept of a neutrosophic set was introduced by Smarandache [13]. This 
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theory is a generalization of classical sets, fuzzy set theory [14], intuitionistic fuzzy 

set theory [1], etc. Some works have been done on neutrosophic sets by some 

researchers in many area of mathematics [4, 11]. Many practical problems in 

economics, engineering, environment, social science, medical science, etc. cannot 

be dealt with by classical methods, because classical methods have inherent 

difficulties. Shabir and Naz [12] first introduced the notion of soft topological 

spaces, which are defined over an initial universe with a fixed set of parameters, 

and showed that a soft topological space gives a parameterized family of 

topological spaces. Theoretical studies of soft topological spaces were also done 

by some authors in [2, 3, 6, 8]. T.K. Mondal and S. K. Samanta initiated concept of 

intuitionistic gradation of openness on fuzzy subsets of a nonempty set X in [16]. 

C. Liang and C. Yan defined base and subbase on intuitionistic I-fuzzy topological 

spaces in [11]. They also gave the base and subbase on the product of 

intuitionistic I-fuzzy topological spaces. There are other theories such as rough 

sets (see [18]), vague sets (see [5]) etc., which have their inherent difficulties. The 

concept of intuitionistic gradation of openness of fuzzy sets in Sostak’s sense [5] 

was defined by some researchers [6–8]. Moreover, C.G. Aras et al. [23] gave the 

definition of gradation of openness t which is a mapping from SS(X, E) to [0,1] 

which satisfies some conditions and showed that a fuzzy topological space gives a 

parameterized family of soft topologies on X. Also, S. Bayramov et al. [24] gave 

the concepts of continuous mapping, open mapping and closed mapping by using 

soft points in intuitionistic fuzzy topological spaces. 

In this paper, we give the definition of neutrosophic topology (cotopology), 

which is a mapping satisfying some definite conditions from SS(X;E) to [0; 1]. We 

show that a neutrosophic topological space gives a parameterized family of soft 

tritopologies on X. Then we introduce the concepts of base and subbase of 

neutrosophic topological spaces on soft sets. 

2. Preleminaries 

In this section, we will give some preliminary information for the present 

study. 

Definition 2.1. [19] A  neutrosophic set A  on the universe of discourse X  

is defined as: 
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      ,:,,, XxxFxIxxA    

where        .301,0:,, _ 


  xFxIxandXFI  
Definition 2.2 [17] Let X  be an initial universe, E  be a set of all parameters 

and )(XP  denotes the power set of X . By A  we will denote a subset of E , i.e 

EA . A pair  AF ,  is called a soft set over X , where F  is a mapping given by 

 XPAF : . 

In other words, soft set is a parameterized family of subsets of the set X . For 

Ae ,  eF  may be considered as the set of e elements of the soft set  AF , , 

i.e.,  

       XPAFEAeeFeAF  :,:,, . 

Definition 2.3. For two soft sets  AF ,  and  BG,  over X ,  AF ,  is called a 

soft subset of  BG,  if  

(1) BA  and 

(2) Ae ,  eF  and  eG  are identical approximations. 

This relationship is denoted by    BGAF ,~,  . Similarly  AF ,  is called a 

soft superset of  BG,  if  BG,  is a soft subset of  AF , . This relationship is 

denoted by    BGAF ,~,  . Two soft sets  AF ,  and  BG,  over X  are called 

soft equal if  AF ,  is a soft subset of  BG,  and  BG,  is a soft subset of  AF , .  

Definition 2.4. The intersection of soft sets  AF ,  and  BG,  over X is the 

soft set  CH , , where BAC   and Ce ,      eGeFeH  . The soft set is 

denoted by      CHBGAF ,,~,  . 

Definition 2.5. The union of soft sets  AF ,  and  BG,  over X  is the soft 

set, where BAC   and Ce ,  
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The soft set is denoted by      CHBGAF ,,~,  . 

Definition 2.6. A soft set  EF ,  over X  is said to be a null soft set, denoted 
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by  , if   eF  for all Ee . A soft set  EF ,  over X  is said to be an 

absolute soft set, denoted by X
~

, if   XeF   for all Ee . 

Definition 2.7. The difference of soft sets  EF ,  and  EG,  over X , 

denoted by      EGEFCH ,\,,  , if Ee ,      eGeFeH \ .  

The complement of a soft set  EF , , denoted by  CEF ,  is defined 

   EFEF CC
,,   where  XPEF C :  is a mapping given by    eFXeF C \  

for all Ee  and CF  is called the soft complement function of F . 

3. Introduction to Neutrosophic Topology on Soft Sets 

Definition 3.1. A mapping      1,0,:,,  EXSSFIT   is called a 

neutrosophic topology on X  if the following conditions hold: 

(1) For    , ,F E SS X E  ,       ;3,,,  EFEFEF FIT   

            0
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~

,1
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The triple  ,, EX
 
is called a neutrosophic topological space of soft sets. 

Neutrosophic topological space  ,, EX  is denoted by NTS . 

Definition 3.2. A mapping      1,0,:,,  EXSSFIT   is called a 

neutrosophic co-topology on X  (briefly NCT ) if the following conditions hold: 
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a)    EXSSEF ,,        ;3,,,  EFEFEF FIT   

b)             0
~

,1
~

,1
~

 XXX FFIITT   

c)         ,,,,~, EGEFEGEF TTT    

         ,,,,~, EGEFEGEF III    

        ,,,,~, 3 EGEFEGEF FF         EXSSEGEF ,,,,   

d)    EFEF iT
i

i
i

T ,, 









  ,    EFEF iI
i

i
i

I ,, 









  ,  

    EFEF iF
i

i
i

F ,, 









  ;      iEXSSEFi ,,, . 

The triple  ,,EX
 
is called a neutrosophic co-topological space of soft sets. 

Neutrosophic co-topological space  ,,EX  is denoted by NCTS . 

Theorem 3.1. a) If  FIT  ,,  is a neutrosophic topology on X , then 

 FIT  ,,  is a NCT  on X  such that     C
TT EFEF ,,   , 

    C
II EFEF ,,   ,     C

FF EFEF ,,   .  

b) If  FIT  ,,  is a NCT  on X , then  FIT  ,,  is a neutrosophic 

topology on X  such that     C
TT EFEF ,,   ,     C

II EFEF ,,   , 

    C
FF EFEF ,,   .  

Proof: a) Since  

               ,3,,,,,, 
C

F
C

I
C

TFIT EFEFEFEFEFEF 
 

      3,,,  EFEFEF FIT   is obtained,    EXSSEF ,,  . Clearly 
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b) The proof is similar to a). The proof is completed.  

Theorem 3.2. Let
 
 ,,EX  be a NTS. For each  1,0r ,  
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are three descending families of soft topologies of soft sets on X such 

rrr FIT  , . 

Proof: Since  

rXTT  1)
~

()(   [ rX   1)
~

()(  ], 

then  
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~
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If  

rTi EF ),( , rEFEF iT
i

i
i
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),(),(  , 
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EFi ),( , rEFEF i
i

i
i








  


 ),(),( 
 
for i , 

then  

rTi
i

EF 


),(  .),(





  
 r

EFi
i

   

So, 
rT  [

rI
 ] is a soft topology for  1,0r . The proof of 

rF is similar.  

Suppose 
rTEF ),( .  

Since  

      ,3,,,  EFEFEF FIT 
 

rEFEF TF  1),(1),(  , 

It follows that 
rFEF ),(  . So 

rrr FIT  ,  is obtained. It is clear  
 1;0rTr

 , 

 
 1;0 rr

 ,  
 1;0rFr

  are descending families. 

Remark 3.1. Let  ,, EX
 
be a NFTS . Then neutrosophic topological space 

gives a parameterized family of soft bitopologies on X
 
for all  1,0r . 

Theorem 3.3. Let   
 1,0

,,
rFIT rrr

  be a descending family of soft 

bitopologies on X  and 
rrr FIT   . Then     ,,:,

rTT EFrEF  

    ,,:,
rII EFrEF       ,,:1,

rFF EFrEF    are a TNF  s . 

Proof: Since 
rrr FITX  ,,

~
,  ,     1

~
 XTT  ,     1

~
 XII   and 

    0
~
 XFF   are hold. Next let      EXSSEGEF ,,,,  , 

    21 ,,, rEGrEF TT    and  21,min rrr  . If 0r , then      EGEFT ,~,  

   EGEF TT ,,0   . Suppose that 0r . Choose 0 such that 

rr  0 . Then we choose  1,0, 21 tt  such that 2211 , trtr    

and    
21

,,, tt EGEF   . Let  21,min ttt  . Then     tEGEF ,,,  (since 

   1,0rr be a descending family). Hence     tEGEF  ,~,  (since t  is a soft 

topology). So,        rtEGEFT ,, . Since 0  is arbitrary,
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The proof for I  is similar to T . 

Now, let      EXSSEGEF ,,,,  ,   ,, 1rEFF    2, rEGF   and 

 21,max rrr  . If 1r , then         EGEFEGEF FFF ,,1,~,   -

dir. Suppose 1r . Choose 0  such that 
1 r

. Then  1,0, 21  tt  

such that   2211 , rtrt  and     .,,,
2111 tt FF EGEF


   Let 

 21,max ttt  . Then    
tFEGEF




1
,,,   (since 
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  is a soft topology). Hence 
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Since



 pF1

 is a soft topology,  






 pFi

i
EF

1
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Now we prove that       3,,,  EFEFEF FIT   for 

   EXSSEF ,,  .  

Let   pEFT , . If 0p ,       3,,,  EFEFEF FIT  . If 1p , the 

soft set  EF ,  belongs to 
rr FIrT   . Then   0, EFF  and 

      3,,,  EFEFEF FIT  . Next consider the case when 10  p . Choose 

0  such that 10   ppp . Then  






ppp FITEF , and 

        .1,,,1,   EFEFEFpEF FITF  Since 0  is 

arbitrary,       3,,,  EFEFEF FIT  .  FIT  ,,  is a neutrosophic 

topology on X . 

Definition 3.3. Let
 
 ,, EX  be a NTS . 

a)   1;0),(:),,(  EXSSFT  is a called a base of  FIT  ,,  if the 

following conditions hold:    EXSSEF ,,  . 

),,(),(
),(),(

EGEF iT
iEFEG

T
i

i







 

),,(),(
),(),(

EGEF i
iEFEGi

i




 



  

),(),(
),(),(

EGEF iF
iEFEG

F
i

i







. 

Theorem 3.4. Define a map  1;0),(:),,(  EXSSFT  as follows: 

a) ,1)
~

()(  XTT  ,1)
~

()(   X ;0)
~

()(  XFF 
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   ),,(),(),(~),( EGEFEGEF TTT  
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is a neutrosophic topology and ),,( FT    is a base of  
FIT   ,, . 

Proof: From the condition a) ,1)
~

()(  XTT  ,1)
~

()(   X

0)
~

()(  XFF  are hold. For 
 
 

  























 










































),(,

),(),(),(),(

),(),(
),(),(

),(),(),(),(

EGEF

EGEFEGEF

T
B

T
AEGEG

EFEF

T
BEGEG

T
AEFEF

TT

B
A

BA






























 

    
  

























),(~,
),(~),(,~,

EGEFT

B
AEGEFEGEF

B
A












 

 
 ,),(~),(),(

),(~),(,~
EGEFEH

T

C

T
CEGEFEH














 

The proof for 


 I  is similar to 
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are obtained. Thus the triplet  
FT 
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Hence the triplet  
YYY

FIT  ,,  is a neutrosophic topology on Y  . It is clear 

that     ,,
~~, EGYEG TTY

       ,,
~~, EGYEG IIY
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Now we define the concept of quotient space of NFTSs. Let 
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sets on 
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  with parameters E . For soft point  EXxe ,
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are obtained. Thus  ,, EX  is a .NTS  
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