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Abstract 

In this paper we consider global bifurcation from zero and infinity of nontrivial solutions 
of some  nonlinear  Dirac problems. We show the existence of two families of global 
continua of nontrivial solutions of this problem emanating from bifurcation points with 
respect to the line of trivial solutions that contain asymptotic bifurcation points and are 
contained in classes of vector-functions with fixed oscillation count.   
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1. Introduction 

In this paper we consider the following nonlinear Dirac problem  

),,0()),(,()()()()(   xxwxgxwxwxPxwB                (1) 
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,0)0()sin,(cos)(1  wwU                                          (2) 

,0)()sin,(cos)(2   wwU                                        (3) 
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R  is a spectral parameter, )(xp  and )(xr  are real-valued continuous functions 

on ],,0[    and  are real constants such that ,,0    ,
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g  where  

)(1 xg  and )(2 xg  are real-valued continuous functions on ].,0[   Moreover, the 

vector-function g  satisfies the following conditions:  

|)(|),( wowxg     as  0|| w                                        (4) 

and   

  |)(|),( wowxg    as   ,|| w                                      (5) 

uniformly in ].,0[ x   

     The Dirac equation, as a relativistic wave equation, describes the motion of 

particles with spin 1/2, such as electrons, positrons, protons, neutrons under the 

influence of external electromagnetic fields (see [11]). It should be noted that 

nonlinear Dirac equations were proposed to model the self-interaction of such 

particles and other phenomena (see, for example, [4-11]). 

      Problem (1)-(3) under condition (4) was considered in [3], where it was shown 

that there exist unbounded continua of solutions branching off from the points of 

the line of trivial solutions (the first components of which are the eigenvalues of 

the linear eigenvalue problem obtained from (1)-(3) by substituting 0g ) and 

contained in classes of functions possessing oscillatory properties of this linear 

problem. 

      In the case where condition (5) is satisfied, problem (1)-(3) was considered in 

[1], where it was proved that there exist global continua of solutions bifurcating 

from the points of the line }{R (the first components of which are the 

eigenvalues of the linear problem) and contained in classes of vector-functions 

possessing oscillatory properties of eigenvector-functions of the linear problem in 

the neighborhoods of these points. Moreover, these continua either contain other 
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bifurcation points, or intersect the line },0{R or have unbounded projections 

onto }.0{R   

      In this paper, we consider problem (1)-(3) when both conditions (4) and (5) are 

satisfied. In this case, we show that the global continua branching from the line 

}{R  are also contained in the classes of vector-functions possessing oscillatory 

properties of eigenvector-functions of the linear problem and, therefore, do not 

intersect other asymptotic bifurcation points. Then we prove that the projections 

onto the line }0{R  of the continua branching from zero and from infinity are 

bounded and, therefore, these continua coincide. 

2. Preliminary   

By ..CB we denote the set of functions which satisfy boundary conditions (2) and 

(3). Let E  be the Banach space ..)];,0([ 2 CBRC   with the usual norm  

.|)(|max|)(|max||||
],0[],0[

xxuw
xx


 

  

We define a set S  in space E  as follows: 

]}.,0[,0|)(||)(||{   xxxuEwS  

For each Ew  we define ),( xw  to be the continuous function on ],0[   

satisfying   

                                       .)0,(,
)(
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We consider the linear eigenvalue problem 
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which obtained from (1)-(3) by setting .0g  By [2, Theorem 3.1]  the eigenvalues 

,, kk  of problem (7) are real, simple and can be numbered in ascending order 

on the real axis as follows 
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,............ 101   kk   

so that the corresponding angular function ),( xwk  at 0x  and x  will satisfy 

the following relations at 0x  and x  will satisfy the following relations  

 )0,( kw

  

and    ,),(  kwk                               (8) 

where )(xwk  is the eigenvector-function corresponding to the eigenvalue .k  

For each k  and each },{   let 
kS  the set of vector-functions Sw

which satisfy the following conditions: 

(i)  ;),(  kw   

(ii) if 0k or ,0k ,  (except the cases 0  and ),2   then for  

fixed ,w  as  x  increases, the function   cannot tend to a multiple of 2  from 

above, and as x  decreases, the function   cannot tend to a multiple of 2  from 

below; if 0k or ,0k ,  then for fixed ,w  as  x  increases the function   

cannot tend to a multiple of 2  from below, and as x  decreases, the function   

cannot tend to a multiple of 2 from above; 

(iii) the function )(xu  is positive in a deleted neighborhood of the point .0x  

Let . kkk SSS   Note that 
kk SS , and kS  are disjoint and open sets in .E  

Moreover, if  ,
kSw   then there exists ],0[    such that |)(||)(||)(|   uw  

0  (see [2, 3]). 

Lemma 1 [3, Lemma 2.8]. If ERw ),( is a solution of problem (1)-(3) such 

that ,
kSw  ,k  },,{  then .0

~
w  

Since the function g  satisfies the condition (5) and (6) it follows from [3, 

Theorem 3.1] and [1, Theorem 4.1] we have the following results. 

              Theorem 1  [3, Theorem 3.1]. For each k  and each },{   there 

exists a continuum 
kC  of nontrivial solutions of problem (1)-(3) which contain  

),0
~
,( k  contained in )}0

~
,{()ˆ( kkSR   and is unbounded in ER  (in this case 

either (i) 
kC   meets  }{R  for some ,R or (ii) the projection )(

}0
~

{


kR

CP


 of  


kC  onto }0

~
{R  is unbounded). 

Theorem 2  [1, Theorem 4.1]. For each k  and each },{   there exists a 
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continuum 
kD  of nontrivial solutions of problem (1)-(3) which meet ),( 

k
  with 

respect to the set 
kSR  and  for this set at least one of the following holds: (i) 

kD  

meets  ),( 
k

 with respect to the set  
 kSR   for some );,(),(  kk    (ii) 

kD  meets  

}0
~

{R  for some ;R  (iii)  the projection )(
}0

~
{


kR

DP


 of  
kD   onto }0

~
{R  is 

unbounded. 
 

3. The connection between global continua bifurcating from zero and from 

infinity 

In this section we will find the connection between the continua 
kC  and 

kD  for 

each k  and each }.,{   To do this, we first prove the following lemma. 

Lemma  2.  For each k  and each },,{    

.)},{(\   kkk SRD   

Proof. Let ERC  be the set of nontrivial solutions of problem (1)-(3). Then It 

follows from Lemma 1 that   

 )( 
kSRC   for each k  and  each }.,{   

Consequently, the sets  

)( 
kSRC    and  )(\ 

kSRC   

are mutually separated in the space ,ER whence, by [12, Corollary 26.6], implies 

that any component of the set C  must be a subset  of )( 
kSRC  or ).(\ 

kSRC   

Since, by Theorem 2, the relation  

 )()}),{(\(   kkk SRD   

holds, it follows that  

.)}),{(\(   kkk SRD   

 The proof of this lemma is complete. 

     Remark 1.  In view of Lemma 2  alternative (i) of Theorem 2 cannot hold. 

     Corollary 1. If 
kC meets ),(   for some ,R then .k   If 

kD  meets )0
~
,(  

for some ,R then .k   

    Thus we can prove the main result of this paper. 
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     Theorem 3.  For each k  and each },{    the following relation holds: 

.
kk DC                                                             (9) 

Proof.  Let  00  be the fixed sufficiently small number. By conditions  (4) and 

(5) there exit sufficiently small 00   and sufficiently large 00   such that 

0

),(


w

wxg
  for any ,],0[),( 2Rwx    0||0  w   and  .|| 0w      (10) 

Since )],0([ 2RCg    it follows that there exists  00  such that  

0
||

|),(|
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w

wxg
  for  any  ,],0[),( 2Rwx   .|| 00  w          (11) 

We introduce the notation:  

}.,{max 00 K  

Then by (10) and (11) we get 
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as  follows: 
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By (12) it follows from (14) that 
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In a similar way,  by (14) and (15), we can show that  

,|)(| Kxn  ,|)(| Kxn  Kxn |)(|    for  ].,0[ x                 (17)  

      

 By (14) and (15) it follows from (1)-(3) that ,)~,
~

(  knn SRw  ,n  solves the 

following  linear spectral problem  
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Then by [3, Theorem 2.4 and  Remark 2.1]  from (18) we obtain  

 )(sin))()(()(cos))()(()( 22 xxxrxxxpx nnnnn   

,),(2sin))()((
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1
 nxxx nnn  ),,0( x                              (19) 

where  

.],,0[),,~()(  nxxwx nn   

 Inteqrating  both sides of relation (19) from  the range of 0 to   and taking into 

account (8) we get  
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Then by (16) and (17)  from  (20)  we  obtain 
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which contradicts  the relation (13), and consequently,  the projection )(
}0

~
{


kR

CP


 of   


kC   onto }0

~
{R  is bounded. Then, by Theorem 1 and  Corollary 1, 

kC   meets  the 

point ),( k  with respect to the set  .
kSR   Next, in a similar way we can show that  

the projection )(
}0

~
{


kR

DP


 of  
kD  onto }0

~
{R  is  bounded, and consequently,  by 

Lemma 2 and Corollary 1, the continuum 
kD  meets  the point )0,( k  with respect  

to the set  .
kSR   Hence by these arguments  for each k  and each },{   the 

continuum  
kC  coincides with the continuum .

kD  The proof of this theorem is 

complete.  
 

References 
  

[1]  Aliyev ZS,  Neymatov NA, Rzayeva HSh. Unilateral global bifurcation from 

infinity in nonlinearizable one-dimensional Dirac problems. Int. J. Bifur. Chaos. 

2021, v. 31 (1), p. 1-10. 

[2]   Aliyev ZS, Rzayeva HS.Oscillation properties for the equation of the relativistic 

quantum theory, Appl. Math. Comput. 2015, v. 271(C), p. 308-316. 

[3] Aliyev ZS, Rzayeva HS. Global bifurcation for nonlinear Dirac problems,    

Electron. J. Qual. Theory Differ. Equ. 2016, (46), p. 1-14. 

[4]  Benhassine A. On nonlinear Dirac equations. J. Math. Phys. 2019, v. 60 (1),      

12 p. 

[5]  Ding Y, Li J, Xu T.  Bifurcation on compact spin manifold. Calc. Var. Partial       

Differential Equations 2016, v. 55 (4), p. 1-17 

[6]  Fushchich WI, Shtelen WM. On some exact solutions of the nonlinear Dirac 

equation. J. Phys A: Math. Gen., 1983, 16(2), p. 271-277. 

[7]   Ivanenko DD. Notes to the theory of interaction via particles. Zh. Eksp. Teor. 

Fiz. 1938, v. 8  p. 260-266. 

[8]   Mertens FG, Cooper, Quintero NR, Shao S, Khare A, Saxena A. Solitary waves in 

the nonlinear Dirac equation in the presence of external driving forces.  J. 

Phys. A: Math. Theor. 2016, 49 (6),  p. 1-24. 



                                        Humay Rzayeva / Journal of Mathematics and Computer Sciences v.1(3)  (2024) p. 43-51 51 

51 

 

[9]   Soler M. Classical, stable, nonlinear spinor field with positive rest energy.  Phys. 

Rev. D 1970, 1 (10),  p. 2766-2769. 

[10] Thaller B.  The Dirac equation. Berlin: Springer; 1992. 

[11] Thirring WE. A soluble relativistic field theory. Ann. Phys. 1958, v. 3 (1),    p. 91-

112.  

[12] Willard  S. General Topology,  Addison-Wesley, Reading, MA, 1970. 

 


