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Abstract 

In this paper, we consider a nonlinear problem for elliptic partial differential 

equations which dependent on a parameter.  The interval of this parameter is 

determined in which there are positive and negative solutions to the considered 

nonlinear problem. 
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1. Introduction 

  

     Let   be a bounded domain in ,1, NRN  with a smooth boundary ,  Let  

L  be the differential operator defined as follows:  
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We assume  that ),;()( 1 RCxa
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  ,,...,2,1, nji    ),0[;)( Cxc  and  

L  is uniformly elliptic in .  

      We consider the following nonlinear problem  
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following condition: there exist nonzero p constants 0
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     Problems of type (1) arise in various fields of physics, namely in the theory of 

nonlinear diffusion created by nonlinear sources, in the theory of thermal 

initiation of gases, in quantum field theory and mechanical statistics, and in the 

theory of gravitational equilibrium of stars (see, for example, [5, 7, 9, 20]). 

     The existence of positive solutions of nonlinear boundary value problems for 

elliptic partial differential equations in various formulations has been investigated 

in many papers (see, for example, [2-7, 9, 11-20]).  In these papers, using various 

methods (analytical methods, a priori estimates, variational methods, degree 

theory, super-subsolution methods and bifurcation techniques), the existence and 

multiplicity of positive solutions to the problems under consideration were 

proved.  
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     It should be noted that the study of the existence of positive solutions to 

nonlinear boundary value problems for elliptic partial differential equations 

depending on a parameter has apparently not yet been considered.  In this paper, 

using analytical methods and bifurcation techniques we show the existence of 

positive and negative solutions of problem (1) depending on a parameter .  

 

2. Preliminary 

 

     Let )1,0(  be given. We choose 0p  sush that  the relations  

np   and pn1  

are satisfied. Then It follows from [1, Theorem 6.2, Part III] that )(
2
pW  is 

compactly embedded in )(,1 C . 

   By E   we denote the Banach space }0:)({ ,1 


uCu 

 
with the norm  

.|||| ,1 C
  We will call u  a solution to problem (1) if )(

2
 pWu  and it satisfies 

problem (1). Since  )(
2
pW  is compactly embedded in ),(,1 C  any solution of 

problem (1) belongs to .E   

       Let P   be the set of functions Eu   which satisfy the conditions:  0u  in 

  and 0




n

u


 
in ,  where 

n

u




  is the outward normal derivative of  the 

function  u   on  .  The sets ,P P and  PPP   are open subsets of .E  It 

is obvious that if ,Pu  },,{   then either there exists 
0

x  such that 

,0)(
0
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1
x  such that 0

)(
1 





n

xu
 (see [4, 14, 15]). 

 We consider the following spectral problem 
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By the classical theorem of Krein-Rutman [10], the smallest eigenvalue 1
  of the 

linear spectral problem (2) is positive and simple, and has a corresponding 

eigenfunction 1
u  contained  in P . 

      By the max-min principle [8] the eigenvalue 1
  of problem (3) is given as 
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follows: 
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where ][u  is a Rayleigh quotient 
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         It follows from (2)  that 
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where 

           0)(
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By (6) problem (1) takes the following equivalent form 
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      By (7) for any  sufficiently small 0  there exists a sufficiently small 0

and sufficiently large 0  such that   
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     Remark 1.  We can extend )(
0

s to 0s  by setting .0)0(
0

  Then it follows 

from (7) that ).;()(
0

RRCs    

 In view of (6) we have 
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  and  it follows from (10) that 
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Moreover, there  exists  a  positive constant   such that 
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     We choose a sufficiently large positive number 
 

 so that the following 

relation holds: 
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Thus , it follows from (18) and (19)  that 
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3. The existence of positive and negative solutions of problem (1) 

 

 In this section we will find intervals for ,  in which there are positive and 

negative solutions, or more precisely, solutions to problem (1) lying in the sets P

and ,P  respectively. 

 Let }.:)0,{( R    
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As norm in the Banach space ER   we take 
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holds, then for each },{   there exists a solution 
,1

u  of problem (1) such that 

.
,1



 Pu   

Proof.   We consider the following nonlinear eigenvalue problem 
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Let 0  be fixed and .0
0
g  Then, in view of relation (12), by  [14, Theorem 

2.12 and Corollary 2.13] for each },{   there exists a continuum 

0
C  of 

nontrivial solutions of problem (22) that meets ),0,
~

(
1
  lies in PR and is 

unbounded in ,ER  where 
1

~
  is a positive smallest  eigenvalue  of the linear  

problem  
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 Note that in this case either 

0
C  meets   ),(   for some ,R  or the projection 
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C  on   is unbounded. 

       In view  of (3), by (23) we get   
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       Using (9)  we can rewrite (22) as follows 
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By (20) it follows from [15, Theorem 2.28 and  Corollary 2.37] that for each 

},{   there is a connected component 


C  of nontrivial solutions of 

problem (25) (or (22)) which meets ),,ˆ(
1
  is contained in PR and either 
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meets , or the projection )( 


CP  of this set on   is unbounded, where 

1
̂  is 

a smallest  eigenvalue of the linear problem  
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  Note that (26) can be rewritten in the form 
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 Now we prove that the set )(
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Let  0
  be fixed sufficiently small positive number. Then, by  (10), (11) and  
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Then  by (32) and (33) we get      



                                              Tofiq Asadov / Journal of Mathematics and Computer Sciences v. 1(4)  (2024), 20–31 63 

63 

 

00

~)(  s   for  ,Rs  

 where  },||,{max~
0000

 


gg   and consequently, by (30) we obtain 

.,~|)(|
0,

 xx
k

                                               (34) 

      By using the max-min principle (see (4) and (5)) we have 
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which contradicts relation (29).  Thus the continuum  PRC 
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for some .R  In a similar way we can show that )( 
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Moreover, we have the following relation: .011 
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Relations (38) and (39) are equivalent to the first relation of (37). 

        The remaining cases are considered similarly. The proof of this theorem is  

complete. 
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