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Abstract 

The Airy operator    ,212

2

xxkxxk
dx

d
L    where  x  is Heaviside function,  

0,0 21  kk  are real numbers, is considered. The scattering problem for the operator 

L  is studied. A formula for expansion in terms of eigenfunctions of a continuous 
spectrum is obtained. 
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1. Introduction 

The operator x
dx

d
S 

2

2

 describes the effect of the potential on the electric 

field and is called the Airy operator. The spectral properties of the Airy operator 

has been intensively studied during the many years (see [4], [6],[7]and references 

quoted therein). It is known (see [2]) that in the study of the inverse scattering 

problem, a special role is played by expansions in eigenfunctions of the continuous 

spectrum of the unperturbed operator.   

We consider the differential equation 

            Cxyxyxy   ,, ,                              (1) 
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where      ,3

2

3

1 xkxkx    x  is Heaviside function,  0,0 21  kk are 

real numbers. This equation corresponds to the Airy operator

   xqxx
dx

d
S  

2

2

, the perturbation potential  xq of which has a step-

like form. Differential equation (1) defines in space   ,2L  a self-adjoint 

operator L , which can be obtained by closure of symmetric operator defined by 

equation (1) on twice continuously differentiable finite functions.  In this paper, the 

direct scattering problem for the operator L  is studied. A formula is obtained for 

the expansion in terms of eigenfunctions of the continuous spectrum of the operator

L . The obtained results can be used to solve inverse scattering problem for the 

Airy operator    xqxx
dx

d
S  

2

2

, the perturbation potential  xq of which 

satisfy the conditions  

   xxq ,0 . 

Note that various spectral problems for the Airy equation were studied in the works 

[3], [5]- [9], [11].   

2. Spectral analysis of the operator L  

 In what follows, we deal with special functions satisfying the Airy 

equation  

0 zyy . 

It is well known (e.g., see [1]) that this equation has two linearly independent 

solutions  zAi  and  zBi  with the initial conditions 

   

    .
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The Wronskian     zBizAi ,  of these functions satisfies 

             1,  zBiziAziBzAizBizAi . 

Both functions are entire functions of order 
2

3
 and type  

3

2
.  We have (see [1]) 

asymptotic equalities for 
z
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where  2

3

3

2
z .    

Lemma2.1.  For any    from the complex plane, equation (1) has 

solutions   ,x  in the form  

 

 
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(2) 
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1

1
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1

1
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(3) 

Proof. Obviously, when   0x  one of the solutions of equation (4) is function 

 xkAi 1 .  On the other hand, for 0x   functions  xkAi 2  and 

 xkBi 2  form a fundamental system of solutions to equation (1).  Therefore, 

any solution of equation (1) can be represented as                  

                           xkBixkAi 22 .                                     (4) 

If we glue these solutions at a point 0x  , we get  
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Using Cramer's rule, from the last system of equations we obtain 

   
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2
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2

1 , . 

Substituting the found values of    and   into representation (4), we obtain 

formula (2). Formula (3) is derived similarly.  

The lemma is proved.                 

 We note that at each fixed x , the solutions   ,x are the entire 

functions with respect to  .  Moreover, the solution   ,x  is real-valued for 

  , . 

Next, using (2) and (3), we find that for   ,   two solutions   ,x , 

  ,x   of Eq. (4 ) are linearly independent and their Wronskian is given by 

             1

22,0,0,0,0,,, 

   ikxx  .                              

It follows from the last equality that the identity 

                                      ,,, 00 xaxax   ,                                                

(5)                                                         

holds for   , , where the coefficient  0a , by virtue of (2), (3), is given 

by 
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(6) 

According to formula (6), the function  0a   admits an analytic extension 

to the all complex plane and has no zeros.  The functions  
 


0

0

1

a
t   and 

 
 
 



0

0

0
a

a
r   have the meaning of the respective transition and reflection 
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coefficients in the scattering theory for the equation (1). 

 

The function 
 
 


0

,

a

x  is called the solution of the scattering problem for 

the equation (3). For  real  λ, the solution 
 
 


0

,

a

x  is bounded, which corresponds 

to the continuous spectrum of problem (1). 

 Let us study the resolvent of the operator L . We consider the equation  

    0Im,,   xxfyxyxy , 

where       ,, 2Lxfxyy . By a classical theorem on the general form 

of a solution of a differential equation, 
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where D  and  D  are constants.  From formulas (2), (3) it follows that   

   0,, 2  Lx  ,    0,, 2  Lx  , 

              






 ,,,,, 2Ldttftxdttftx
x

x

 . 

Then from relations      ,2Lxy ,     ,0, 2Lx  , 

   0,, 2  Lx  ,     ,0, 2Lx  ,    0,, 2  Lx   it follows 

that 0D ,  0D . Thus, formula  

 
 

            ,,,,,
2 02





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


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

x
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dttftxdttftx
ak

i
xy 




 

  defines the inverse operator   1
 IL  , where I   is the unit operator.  It is easy to 

prove that the inverse operator   1
 IL   is bounded. 

Thus, we have proven the following theorem.  

Theorem 2. 1.  For   , , integral operator R  is defined in 

space   ,2L  by the formula 

      




 dttftxRxfR  ,, , 

where  
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i
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 ,,,,

2
,,

02

 is the 

resolvent of the operator L . 

Explicit formula for the resolvent R  leads to the theorem of expansion in 

terms of eigenfunctions of the operator L . As is known (see [4] ), the continuous 

spectrum of the operator L  fills the entire real axis. Then, we denote by  E , 

where   runs the Borel subsets in   , , decomposition of the identity of a 

self-adjoint operator L  (see. [10]). In the absence of a point spectrum, the 

following formula is valid: 

       .
2

1
lim

0 



 


diRiR

i
E  

 (see [10]). This formula is sometimes called Stone's formula. In particular, 

assuming   , , for the operator L  we get 

    





 


diRiR
i

I
2

1
lim

0
 

This formula and relation (5) serve as the basis for the derivation of the expansion 

theorem.  

 Theorem 2. 2.  The expansion formula 

              

 
     yxdyx

ak






 


,,
1

4

1
2

02

                                            

is valid, where  is Dirac’s delta function. 
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