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Abstract 

An optimal control problem for an elliptic equation with periodic boundary condition is 
considered. The correctness of the problem statement is investigated. The theorem on the 
existence and uniqueness of the solution to the considered optimal control problem is 
proved. It is proved that the objective functional is differentiable and an explicit 
expression for its gradient is derived. Necessary and sufficient conditions for the 
optimality of the controls are obtained. 
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1. Introduction 

    Optimal control problems for elliptic equations arise in the fields of elasticity 

theory, heat transfer, convection-diffusion-reaction, and environmental 

forecasting [1-3]. Such problems have been studied quite thoroughly for elliptic 
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equations with classical boundary conditions [4-11]. However, these problems 

have been less studied in the case of periodic boundary conditions.  

2. Statement of the problem and its correctness        

 Let  nilxRxxx i

n

n ,1,0:),...,( 11   be a parallelepiped in .nR  

Let us denote by  1

2Ŵ  the subspace formed by the l  - periodic elements of

 1

2W , i.e. the elements   1

2)( Wxuu  satisfying the condition

.,1,
0

niuu
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 In this work, the scalar product in the space  2L  is 

denoted by  ,,vu and the norm is denoted by the symbol .u  Let us consider the 

following optimal control problem: İt is required to minimize the functional 
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   .)( 2  LVxvv                                   (5) 

Here 0 is a given number,   2LV  is a given set,   2)( LVxvv  is 

a control, )(),(),( xzxaxk are given measurable functions satisfying the 

following conditions 

,,)(0,)(0 21  xxaxk   

 .)(,,,, 221  Lxzconst                            (6) 
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      Definition 1. The generalized solution to the boundary value problem (2)-(4) in 

the space  1

2W  for each fixed   2)( Lxvv is called the function

  1

2
ˆ),()( Wvxuxuu  that it satisfies the following integral identity for 

  1

2
ˆ)( Wx : 
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      Theorem 1. Assume that conditions (6) are satisfied. Then, for each fixed 

  2Lv , there can be at most one generalized solution to the boundary value 

problem (2)-(4) in the space  1

2W  and the estimate  
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is hold. Here   .2
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      Proof. Consider the quadratic form ).,( uuL  If we choose u in (7) and 

taking into account the inequalities (6), we obtain  
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According to “Cauchy inequality with ε” [11, p.33] when 
2

1  , we obtain the 

following inequality: 

.
2

1

2
),(),(

2

1

21 vuuvuvuuL



                       (10) 



      Rafig Taghiyev, Aitaj Mammadova / Journal of Mathematics and Computer Sciences v. 1(4)  (2024), 39–48 42 

42 

 

It follows from (9) and (10) that: 

2

1
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Hence we obtain the following inequality: 
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Here ).,2min( 13     

From here the estimation (8) is obtained. From estimate (8) it is clear that for

0v the solution )(xu must be equal to zero, and, therefore, problem (2)-(4) can 

have no more than one generalized solution from  1

2W . The theorem is proved. 

       Theorem 2. If conditions (6) are satisfied, then for every   2Lv  there 

exists a generalized solution to the problem (2)-(4) from the space  1

2W . 

       Proof. Let us define a new scalar product and norm in the space  1

2Ŵ : 
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This scalar product is identical to the following scalar product of the space 
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Therefore, the identity (7) can be represented as follows: 

  ).,(,  vu                                             (11) 

When   2Lv  is specified, the expression ),( v defines a linear functional 

depending on  in the space  1

2Ŵ . Besides that, since 
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,),(
12  vMvv   

the functional is bounded. Here the constant 02 M does not depend onv and .  

Then according to Ritz theorem[12, p.75], there is a unique function   1

2ŴF  

such that  

     .ˆ,,, 1

2  WFv   

From this and from (11) it follows that, there is only one function Fu  in space 

 1

2Ŵ  which satisfies the identity (7). The theorem is proved.  

      Theorem 3. Suppose that conditions (6) are satisfied and the set V is a closed, 

convex and bounded set in the space  2L . Then the optimal controls set 
*V of 

problem (1)-(5) is not empty, but is closed, convex and bounded, and any 

minimizing sequence in the space  2L converges weakly to the set .*V  

Moreover, if ,0  then the set 
*V consists in the only one point 

,)(** Vxvv  and the arbitrary minimizing sequence converges to the element 

*v  according to the norm of the space  .2 L  

       Proof. Note that the functional (1) under conditions (2)-(4) is convex on 

 .2 L This follows from the linearity of the solution ),( vxuu   of the boundary 

value problem (2)-(4) for the control  ,2 Lv and from the convexity of the 

function 
2

zu   for .Ru  In addition, if ,0  then the functional (1) as the 

sum of a convex and a strongly convex functional is strongly convex on  .2 L  

       Let us show that the functional (1) under conditions (2)-(4) is continuous on 

 .2 L  Let   2)( Lxvv  be some element,     2)( Lxvv kk be an 

arbitrary sequence, such that 

)()( xvxvk  strongly in  .2 L                            (12)                                  

According to Theorems 1 and 2, each control   2)( Lxvv kk  corresponds to 

a unique generalized solution   1

2
ˆ),( Wvxu k  of the boundary value problem 

(2)-(4). We denote .),,(),()(  xvxuvxuxw kk  From (7) it follows that the 
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identity is satisfied 
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From this it follows from Theorem 1 that the following estimate is valid: 
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Then, by virtue of (12), we have 

),(),( vxuvxu k   strongly in  .1

2 W                      (13)                           

From this and (12), (13) we obtain that )()( vJvJ k  for ,k  i.e. functional 

(1) is continuous on  .2 L  Then, by virtue of Theorem 5 from [13, p.52], 

functional (1) is weakly lower semicontinuous on  .2 L In addition, the set   is 

convex, closed, and bounded in the space  .2 L Therefore, the validity of 

Theorem 3 follows from [13, p.49, Theorem 2, p.51, Theorem 4; p.55, Theorem 8]. 

Theorem 3 is proved. 

 

3. Differention of the objective functional and optimality criterion 

Consider the adjoint problem corresponding to the problem (1)-(5): 
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      Definition 2. The generalized solution to the boundary value problem (14)-(16) 

in the space  1

2W  for each fixed   2)( Lxvv is called the function 

  1

2
ˆ),()( Wvxx   such that it satisfies the following integral identity 

for   1

2
ˆ)( Wx : 
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From Theorems 1 and 2, it follows that for each   2Lv  there exists a unique 

generalized solution to the problem (14)-(16) from the space  1

2W  and the 

following estimation is hold: 
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Here 01 M  is a constant.  

Theorem 4. Let conditions (6) be satisfied. Then the functional (1) is Fréchet 

continuous differentiable in the space  2L and its gradient at the point 

  2Lv  is determined by the following equality 

.),(2),()('  xxvvxvJ                       (19) 

Proof. Let us choose the controls   2, Lvvv and assume that 

).,(),(),( vxuvvxuvxu  Then from the conditions (2)-(4),it follows that 

   is the generalized solution to the following boundary problem: 

,,)(
1
























n

i ii

xvu
x

u
xk

x
              (20) 

,,1,0 niuu
iii lxx                   (21)                             

.,1,)()(

0

ni
x

u
xk

x

u
xk

iii lxixi













                (22) 

A generalized solution to this problem satisfies the following integral identity 

for arbitrary  :ˆ)( 1

2  Wx  
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The estimation (8) in Theorem 1 shows that  
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for a function u satisfying the identity (23). Here 03 M  is a constant which 

does not depend on .v  

Now let us consider the increment of the functional (1): 

  











dxvxudxvxuxzvxudxvdxvv

dxxzvxudxxzvvxuvJvvJvJ
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 .)2( 2 dxvvv


                                                (25) 

If we choose u in the identity (17) and    in the identity (23) and 

subtract the resulting equations side by side, we obtain the following equation  

  


 .)(),(2 vdxudxxzvxu   

Substituting this equation into (24), we obtain 

,)2()( RvdxvvJ  


                                   (26) 

where 

.),( 22
dxvdxvxuR 



   

From the estimation (24) and the expression of ,R we obtain that  .voR  It 

follows from (26) that the functional )(vJ is differentiable in the space  2L  and 

its gradient at the point   2Lv  is determined by the equality (19). Using 

identity (19) and inequality (18), it can be show that the functional )(' vJ is 

continuous in  .2 L  The theorem is proved. 

The following theorem expresses the optimality criterion for the problem (1)-

(5) and its accuracy is derived from the sign of optimality for smooth convex 

functionals[13, p.28]. 
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Theorem 5. The satisfaction of the following inequality is necessary and 

sufficient for the optimality of control Vxvv  )(**
 in problem (1)-(5): 

,0))(2( *** 


dxvvv                                         (27) 

.)( Vxvv   

Here, the function ),( ** vx  is the solution to the problem (14)-(16) 

corresponding to the control .*vv   If ,int* Vv  then the inequality (27) is 

equivalent to the equality 

.,0)(2)( **  xxvx   
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