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Abstract

The Riesz transform has been well studied on classical Lebesgue, Morrey, Sobolev,
Besov, Campanato, etc. spaces. But its discrete version has not been well studied. In this
paper, we find a necessary condition and a sufficient condition for the summability of the
discrete Riesz transform.
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1. Introduction

The ] -th Riesz transform of the function f Lp(Rd), 1< p<+oois

defined as the following singular integral:
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It is well known (see [9, 13, 17, 18]) that the Riesz transform plays an
important role in the theory of harmonic functions. The boundary values of
harmonically conjugate in the upper half space functions are
interconnected by the Riesz transform.

From the theory of singular integrals (see [17]) it is well known that the

Riesz transform is a bounded operator in the space L ( ) p>1, thatis,
if el (RY), then R,(f)eL,(R?)and the inequality
IR, fHLp <C,[f],, (1)
holds. In the case f € Ll(Rd) only the weak inequality holds:
mixeR*:|(R £ x) > 2}< %||f||Ll, )
where M stands for the Lebesgue measure, C,, C, are constants
independent of f . From the inequalities (1), (2) it follows that the Riesz
transform of the function € Ll(Rd ) satisfies the condition
mixeRY: ‘(Rj f Xx)| > Af=0(1/2), A—> .

Note that the Riesz transform of a function f e Li(Rd) is generally not

Lebesgue integrable. In [7], using the notion A-integrability of functions,
an analogue of the Riesz equation for the Riesz transform of functions from

the class Ll(Rd) was proved. In [10-12, 14-17], the boundedness of the

Riesz transform in the functional spaces of Sobolev, Besov, Orlicz,
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Companato, Morrey, etc. was studied. But the discrete analogue of the
Riesz transform has not been fully studied. In this paper, we find a
necessary condition and a sufficient condition for the summability of the
discrete Riesz transform.

2. Discret Riesz transform and its properties

Denote by Ip:=|p(Zd), p>1, the class of sequences h={hm}

mezd 7
satisfying the
condition

Yp
I, :=[Z|hm|"j <or,

mez ¢
where Z¢ = {m = (ml,...,mk): meZ,i =1,_d} and Z is the set of integers.
Let h={h.} . el,, p=1. Namely, the sequence Ii‘j(h):{(lfi‘jh)n}nezd is

called the Riesz transform of the sequence h, where
~ n. —m.
d
(th)n: > L —L.h,, n={n,...n}ez’.
mez9, m=n | - m|

Note that if hel , 1< p <o, then it follows from the Holder inequality

n.—m.
that the series Z ﬁ-hm absolutely converges, and therefore
mez?, men [N —

the Riesz transform of the sequence h exists.
Let's note some properties of the discrete Riesz transform, obtained in
the work [1].

Theorem 1 [1]. Let 1< p<w. For any hel we have ﬁjhelp, and

there exist Cp > O such that

Hﬁihwp <G, '||h|||,, :
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Theorem 2 [1]. There exist C; > 0 such that for any h €l; and for any
A >0 the distribution function

(ﬁthﬂ):‘{n ez*:[Rh)|> z]:: 31

{neZd : ‘(ﬁjh)n‘>1}
of the Riesz transform of the sequence h satisfies the inequality
S G
\(th)(/lj <2

Theorem 3 [1]. Let hel,. Then the equation

2.,

nez

Iy

iim 2-(R,h)2)= s

A0+

holds, where
d-1

wg (s

and {dT_l} is integer part of a number

In addition, we note that the boundedness of the discrete Hilbert,
discrete Ahlfors-Beurling and discrete Riesz transforms on discrete Morrey
spaces was studied in [2, 4, 5, 8].

3. A necessary condition and a sufficient condition for the summability
of the discrete Riesz transform

Theorem 4. Let hel,. Then to include ﬁjh el,, it is necessary that the

equation

> h,=0 (3)

nezt

holds.
Proof. In first we prove that if the sequence b=1{b,} . €l,, then the

4
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distribution function b(ﬂ)=‘{n ez, >ﬂ}< of the sequence D satisfies

the condition

b(1)=0(/2), 21 —>0+. (4)

It follows from the inequality

Shi-, Zls| | Shl s

nez* ez o, [>1} k=0 2ok

>[nez? >+ ;[z-k-l ez plel 2]
~b{1)+ g 2 (b2 *)-b(2*))]= kZ':;[zkl b2

that
lim 27 -b(2™ )= 0.
Hence, taking into the decreasing of the function b(/l), we obtain (4).
It follows from (4) that, if Ii hel, then
R, h)(,1 o(/2), A—>0+,
and, therefore, by Theorem 3, we obtain that the equation (4) holds. The

proof of the theorem 4 is complete.
Theorem 5. If the sequence h el, satisfies the conditions

i) Zhn =0;

nez!

i) > |hy|In (e +|m|)< 0

mez®

then ﬁj h € |, and the inequality
[Rih], <(d+5)2* |, [In(e+|m]) (5)
! mez¢

holds.
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Proof. From the definition of the discrete Riesz transform it follows that

(Rinkl=I%

From the condition i) for N # 0 we have

—|| - (6)

~ n.—m, n—m o
‘(R.h) = j I .h|= j i h - i hl<
hn meZ¥m¢n|n—m|d+l " mezdz:m¢n|n—m|d+l m m§d| |d+l m

|n —m; n. |
- _z Z d_{_l dj+l 'hm . (7)
n meZd,matn |I’l— |n|

It follows from inequalities (6) and (7) that

~ ~ n.—m. n.
HRJ'hHll - n; ‘(th)n <2|h z [ z ||nj_m|dil - |n|dj+1|' hm] =

nez? nz0| mez? m=n

n.—m.
=2h| + h.|- | L |
| I me;{0}| m| nEzd; n¢m |n_m|d+l | |d+1

2+ S, ®

mez¢ \

where

|n.—m. n. | |n.—m. n. |

In = J dl+1 - dJ+l + J dl+1 - dJ+l =
<3, mz0,nm || — M| n| >3 |[n —m| In|
=JW43® m=0, (9)

Estimate the summands J%, m#0, i =1,2. Define k = [Iog2(4\m\)]+1

m ), we have

, Where [|ng(4‘m‘)] is the integer part of the number log 2(

i nj |
d+l | |d+1

| n.—m.
W=
[n[<3/m],n=0,n=m

[n—m|
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1 1. 1
- d d — d
<dmnem M= pidminco [N pisdm n¢0|n|
<2y ¥ d—ZZZdel—ZZZM =
p=1 277 <|nj<2P n| p=1|n|<2?

_ 2d4l) _ 22d+1([|og 2|m|]+3)£ 2d+3 |n(

),

30) _ n—m 0 |:
m ‘n‘>3‘m‘ |n_m|d+1 |n|d+l
1 1 m |
= nj d+1 | qd+1 | : d+1 <
o3| [n—m| In| In—m|
|n|d+l | m|d+1
_ln— m.
< ‘n ‘ + 1<
ng‘m |n|d+1|n m|d+l inf>am| |nm|d+1‘
In|~[n =] (" " = m[+..+|n ") m|
< n- d+1 d+L d+1 —
s " n—m["" n=3m [n—m|*"

<

. |n|_|m|-<d+1>-[“|nl|jd Ly
A, |d+1( n U n>sm( |n|)

@22 Y L <d+z>zd+lz[ » ﬂ
3m|2Pt<|n<3|m|2? |N

wl N

in>3m || =

= 293%m| 2"

<|m[-(d +2) 2d+1z <(d+2)2%* <(d +2)2%* In(e +|m|)

3d+l| |d+1 d+l)(p -1)

From this and from (8), (9) we obtain (5). The proof of the theorem 5 is
complete.

Note that for the discrete Hilbert and the discrete Ahlfors - Beurling
7
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transform, analogues of Theorem 4 and Theorem 5 are proved in [3, 6].
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