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Abstract

In this paper we consider a mixed problem for nonlinear wave equations with
nonlinear transmission acoustic conditions. The existence of global solutions for this
problem is proved.
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1 Introduction
Let Q be a bounded domain in R" (n 21) with smooth boundaryl;, Q, cQ
is a subdomain with smooth boundary I, and €, =Q\Q, is a subdomain with

boundary T'=T,UT,, I\, = @. We consider the following nonlinear

transmission acoustic problem:

utt—Au+|ut|q1_1ut=|u|p_1u in € x(0,), (1)
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Ukt —Au+|ut|q2_1ut =] Py in Q, x(0,0), 2)
Méit + D& +KS=-ut  on T',x(0,0), (3)
u=0 on le(O,oo), (4)
u:u,5t=a—u—@+p(ut) on FZX(O,OO), (5)
ov ov

u(x,0)=u,(x), u,(x,0)=u,(x), xe Q,, (6)
v(x,0)=0,(x), v,(x,0)=0,(x), xeQ,, (7)
5(60)=5,(x), 5,(x0) =M _%% | 1 )=4,, xeT,, (@)

ov ov
where v s the unit outward normal vector to r ;

M,D,K:T, >R, p:R—>R u,u,: Q »>R, v,v,: Q, >R, &: T, >R
are given functions, p>1,q; >1, i=12 are constants.

Transmission problems arise in several applications of physics and biology.
Transmission problems were studied, for example, in [4-8,18,28]. Acoustic boundary
conditions were introduced by Beale, Rosecrans [1] and studied in [2-

3], [9-13], [14-16], [19-27].

We consider the nonlinear transmission acoustic problem (1)-(8) for which we
prove the existence of global solutions under the condition

p< max{ql, qz} :

Our paper is organized as follows. In section 2 we introduce some notations,
preliminaries and statement of main results; in section 3 we prove the theorem on
existence of a global solution.

2. Preliminaries and main results

The inner product and norm in LZ(Qi), 1=12 and LZ(FZ) are denoted
respectively, by
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(), = Ju(o()dx, ] {J () de i=12,

Q; Q;

(6,0),, = [s(x)o(x)dr, |61, = ( [ (50 drzlz.

I
We define a closed subspace of the Hl(Ql) as
Hp (Ql)z{ ueH'(€,):7(u)=0 a.e.on Fl} ,
where 7, : Hl(Ql)—> HY2(T") is the trace map of order zero and H1/2(F) is the

1
Sobolev space of order E defined over I', as introduced by Lions and Magenes

[17]. Observe that the norm in Hil (Ql):

2
. ou
o) =| 2 i [&J dx

and the norm of the real Sobolev Space Hl(Ql) are equivalent, because the

1
2
Ju

Poincare’s inequality holds in H;l (Ql). Thus we consider HE (Ql) with the above

gradient norm.

We give our main result on global existence and uniqueness of weak solutions.
First of all, we give the definition of a weak solution and the theorem on local
existence and uniqueness of weak solutions for the problem (1)-(8), which is proved
by combining the Galerkin method and the fixed point method in the work [29].

Definition 1. The triple of functions (U(X,t), U(X,t), 5(X,t)), where
u:Qx[0,T]>R, 0:0,x[0,T]>R, §:T,x[0,T] >R,

is called a weak solution of the problem (1)-(8), if
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uel0.THL Q) , verr(o,T; Hi(,)),
70(“): 70(0) a.e.on T, x(0,T),
u e (0, T; 3@ )N L=, x(0,T)),
v el”(0,T;2(,))N L=, x(0,T)),
5,5, e”(0T;12(T,))
and:

4 (4, @), +(Vu, V), +(|u* v @) +

+4 (0, W), +(VU,V\P) +(|u |q2’lut,\11) +

2

(2 (70 (u)) 7 )2 (t70(¢)))2:
=(f(u).2) +(g(v).¥),

for VO e Hé (Q,), VWeH (Qz) such that @ =¥ on I, in the sense of
distributions in D’ (O,T) and
&(7,(u)+ M5,e). +(D5, +K,e). =0
for Ve € L?(I,) in the sense of distributions in D'(O,T), as well as:
u(x,0) =uy(x), u,(x,0)=u,(x) a.e.in Q,,
v(x,0)=0,(x), 0,(x,0)=0,(x) a.e.in Q,,
5(x,0) = 5,(x), é}(X,O)Zé}(X) a.e.onl’,.

Theorem 1 (local existence and uniqueness). Let the following conditions be
satisfied:

M,D,KeC(T,), M >0, D>0,K >0 for ¥xely,
p>1if n=1,2, 1< pgL if n>3,
n-2
peCH—o0;+0), |,0(S)|Scl|s|ql (c, >0);
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p(S) is a monotone increasing function on (—oo;+ ) .
Then for

V(Uo W '50) € H%(Ql)x Hl(Qz)x LZ(FZ)
V(Ul Ups 51) € I-qu(Q1)>< Lo (Qz)x LZ(Fz)
there exists the number T > 0 such that the problem (1)-(8) has a unique weak
solution (u, L, 5), satisfying the conditions:
uec((o,THL(®)), u ec(0,T];L2(@))NL+* (@, x(0,T)),
vec(o.ThHYQ,)), v C(0,T]L2(Q,)N L=, x(0,T)),
5,8, L7(0,T;2(T,));
moreover, if T, >0 — the length of the maximum interval of the existence of the
solution (u,u, 5), then the following alternative is valid: either
Ty =+0;

or

t>T a0

i (o +lof + [Vl vl + MM, Kol J=ee.

In the following theorem we establish our main result on existence global weak

solutions of the problem (1)-(8) under the condition p <min { ql,qz} .

Theorem 2 (global existence and uniqueness). Assume that the conditions

of the Theorem 1 and the condition p <min {ql,qz} hold. Then the local weak

solution (u,u,é‘) of the problem (1)-(8) is global and T can be taken arbitrarily

large.

3. Proof of global existence and uniqueness

Proof of the Theorem 2. Let (u , 0,5) be a weak solution of the problem (1)-

(8). Multiplying the equations (1), (2), (3) by U, U, &, and integrating over
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Q, Q,, I',, respectively, we get

Sl (22 u] 5 alvuf +
¥

=)

1 0 1 - 1 .
5%W4E+ﬂiimj +E%wuﬁ+@uq%1l=———imflﬂl,
[
1
. VPaf +5alK

whence using the first condltlon in (5), we obtain

~4 M

UUHHWN-%UM+WWIﬂ

LK
—4L—w“14wﬂﬂ(%@%ul+

+(u., 8, ), +Qut W 1)1 +QuI % 1)2 +

or by the second condition in (5):
1
E%QWMHWN?WQMHWWE

gl o) el

p+1

)_

)
“ige

ot , 1)l + Qut

+ (p(ut)’ U, )r2

Integrating the equality (9) from 0 to t, we have

WUHHWW-WUHHWWIHJ_ﬁ

<ol )+

+5%ﬂwﬁﬂﬁ+5%ﬂ|“ 1) + (10)
+j [(|ut Wt 1)l +(|Ut|q2+1, 1)2 +(p(u).u), +H\/55t ijdr -
0
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(e ol Il +]FRS +|Raf )-

el el )

+2;[(|u|p_lu, U, )ldr+2‘:[(|u|p_l v, U‘)z dr.

First we estimate the last two terms of the right hand side of the equality (10). Using

Holder’s inequality with exponents

q, +1
L and ,0’:q1 +1 [£+i':lj,
Yo,

p:

1 P

we get

0
. BN
. D) @+l . @
@ q+l
< H|u| dxdr _[ u| dxdz| |
0 0
. . . a’ S L R | .
whence using Youngs inequality |ab< ——+ — ,—+==1 with the
en” p P P
1
qp+1
parameter 17 = U , we have
1
t t Plat)
-1 q a
'[(|u|p u, ut) dr 1 H u  dxdr+
0 ! T oQ

+1)n

o+
'u1 Jt'J'|ut|1 dxdr
1091

Since p < min { q,.d, } , then using Young’s inequality with exponents

(11)
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(p+Da, |, (p+1)aq, (1+3;=q,

#= ol o e by
we get
p(ay+1)
a1 p(q +1) p+tL q,— P
ul <—L—N o+
(p+1)a, (p+1)q,
Using the last inequality in (11), we obtain
t TTlt
p-1 ’ dr < p:ul p”d d
£(|u| u ut)l < p+1-([£ lu| dxdr+

(12)

+(q1 _ p),LllTaT mes €2, N K, jj |u |q1+1
(q1+1)(p+1) q1+1091 t

In a similar way we have

Using (10) and the estimates (12) and (13) we conclude that
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<o |+

R S S N
+ﬁ[(|u|p”’1)l+(|u|p+ ’1)2]'—
214 L+ t .
+(1_q1+lJ£(|ut|q 1’1)1dr+[ ]_!( q ' ) dr+
t
oJ[totw), +|vBaf }dfg
0 2
1 (1 AT B KR N M Y

+i[(|u |p+1’1)1+(|uo|p+1 ) J Zz‘,(qi - p)ui ! mes Q, .

p+1 |1 qi +1

+pi+1max{yf,ﬂf}i[(|u|p )+ (o™ 1), |d.

We choose the positive numbers Moy M such that the following inequalities hold:

2 2
1- M 0 1- % Lo,
q +1 q, +1

Using Gronwall’s inequality in (14) we have
Sl vl el v of, + [NV
e 1) (P ), J+
+(1—q21‘fl]i (Iut|““l,1)ldr+[ ]j( w1 des
+_:[[(p(ut),ul)r2 +H«/55t r2}drsCT,

2
+
I,

;)+ (14)
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where C, depends on Hu S sl and on the

1r2

u\ vu Vo
1 0 0

’ ’

2

1’ 2’ 1 ollr,

positive number T , which is arbitrary.
Therefore, the local solution (u,u,é') of the problem (1)-(8) obtained in the

Theorem 1 is global.
Theorem 2 is proved.
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