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Abstract 

In this paper we consider a mixed problem for nonlinear wave equations with 

nonlinear transmission acoustic conditions. The existence of global solutions for this 

problem is proved. 
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1. Introduction 

        Let   be a bounded domain in  1nRn  with smooth boundary 1 , 2  

is a subdomain with smooth boundary 2  and 21 \  is a subdomain with 

boundary  2121 ,  Ø. We consider the following nonlinear 

transmission acoustic problem: 
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where  is the unit outward normal vector to  ; 

RRRuuRRRKDM  202101102 :,:,,:,:,:,,   

are given functions, 2,1,1,1  iqp i are constants. 

       Transmission problems arise in several applications of physics and biology. 

Transmission problems were studied, for example, in [4-8,18,28]. Acoustic boundary 

conditions were introduced by Beale, Rosecrans [1] and studied in [2- 

3], [9-13], [14-16], [19-27].  

        We consider the nonlinear transmission acoustic problem (1)-(8) for which we 

prove the existence of global solutions under the condition 

 
21

,max qqp   .  

        Our paper is organized as follows. In section 2 we introduce some notations, 

preliminaries and statement of main results; in section 3 we prove the theorem on 

existence of a global solution.  

 

2. Preliminaries and main results 

 

         The inner product and norm in  iL 2 , 2,1i  and  are denoted 

respectively, by 

 2
2 L
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      We define a closed subspace of the  as  

                                    
1

1 1

1 1 0 1: 0 a. e. onH u H u        , 

where     2/1

1

1

0 : HH  is the trace map of order zero and  2/1H  is the 

Sobolev space of order 
2

1
 defined over  ,  as introduced by Lions and Magenes 

[17]. Observe that the norm in  1

1

1
H : 
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and the norm of the real Sobolev Space  1

1 H  are equivalent, because the 

Poincare’s inequality holds in  1

1

1
H . Thus we consider  1

1

1
H  with the above 

gradient norm.                      

        We give our main result on global existence and uniqueness of weak solutions. 

First of all, we give the definition of a weak solution and the theorem on local 

existence and uniqueness of weak solutions for the problem (1)-(8), which is proved 

by combining the Galerkin method and the fixed point method in the work [29]. 

 

Definition 1. The triple of functions , where  

, , , 

is called a weak solution of the problem (1)-(8), if                 

 1
1 H

      txtxtxu ,,,,, 

  RTu  ,0: 1   RT  ,0: 2   RT  ,0: 2
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for ,  such that  on  in the sense of 

distributions in  and 
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for  in the sense of distributions in , as well as: 

    
,   a. e. in , 

,   a. e. in , 

   
,   a. e. on 2 . 

Theorem 1 (local existence and uniqueness). Let the following conditions be 

satisfied: 
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there exists the number 0T  such that the problem (1)-(8) has a unique weak 

solution  ,,u , satisfying the conditions: 
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moreover, if 0max T    the length of the maximum interval of the existence of the 

solution  ,,u , then the following alternative is valid: either     
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In the following theorem we establish our main result on existence global weak 

solutions of the problem (1)-(8) under the condition  
1 2

min ,p q q . 

       Theorem 2 (global existence and uniqueness).  Assume that the conditions 

of the Theorem 1 and the condition  
1 2

min ,p q q  hold. Then the local weak 

solution   ,,u  of the problem (1)-(8) is global and  T  can be taken arbitrarily 

large. 

 

3. Proof of global existence and uniqueness  

 

            Proof of the Theorem 2. Let  , ,u    be a weak solution of the problem (1)-

(8). Multiplying the equations (1), (2), (3) by , ,t t tu    and integrating over 
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whence using the first condition in (5), we obtain 
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Integrating the equality (9) from 0  to t , we have 
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First we estimate the last two terms of the right hand side of the equality (10). Using 

Holder’s inequality with exponents 
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Using the last inequality in (11), we obtain 
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         In a similar way we have 
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Using (10) and the estimates (12) and (13) we conclude that 
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where 
TC  depends on 

2
1

2
00011

,,,,,
2121 

  uu and on the 

positive number T , which is arbitrary.  

Therefore, the local solution  , ,u    of the problem (1)-(8) obtained in the 

Theorem 1 is global.   

Theorem 2 is proved. 
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