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Abstract 

A mixed problem for nonlinear hyperbolic equations with nonlinear acoustic transmission 
condition is considered. The theorem on existence and uniqueness of solutions for this 
problem is proved by the semigroup method. 
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1. Introduction 

Let   be a bounded domain in 3R  with smooth boundary 1 , 2   
is a subdomain with smooth boundary 2  and  221 \    is the 
subdomain with boundary  2121 ,  Ø.  

The nonlinear transmission acoustic problem considered here is 

                              1 1 0tt tu u u u f u      in     1 0,   ,                     (1) 
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                              2 2 0tt t f             in     2 0,   ,                  (2) 

                                        tt t tu        on  2 0,   ,                               (3) 

                                                0u     on     1 0,   ,                                            (4) 

                                u  ,  t t

u
u


 

 

 
  
 

  on  2 0,   ,                (5) 

                                    0, 0u x u x ,    1,0tu x u x ,  
1x ,                     (6) 

                                    0,0x x  ,    1,0t x x  ,  
2x ,                     (7)      

               0,0x x  ,      0 0
1 1,0t

u
x u x


  

 

 
   
 

,  2x ,   (8) 

where   is the outward normal to the boundary  ;  0 1, 2i i    and 0   

are constants;   0 1 1, : 1, 2 , , : ,if R R i u u R      0 1 2, : ,R   

0 2: R    are given functions. 

The problems like (1)-(8), called transmission acoustic problems, are 
related to the problem of two wave equations which models the transverse 

acoustic vibrations of the membrane composed by two different materials 1  

and 2 . 

Transmission problems were studied, for example, in [4-6, 13]. The 
acoustic boundary conditions were studied in [1-3], [7-8], [11-12]. 

The problems like (1)-(8) with linear acoustic conditions were studied in 
[23-25] in which some results on local existence, global existence, the exponential 
stability and blow up results were obtained. 

In this paper we prove the theorem on existence and uniqueness of weak 
solutions for the problem (1)-(8) with nonlinear acoustic transmission condition. 

2. Preliminary   

The inner product and norm in  iL 2 , 2,1i  and  2

2L   are denoted 

respectively, by 

                          ,

i

i
u u x x dx 



  ,   
1/2

2

i

i
u u x dx



 
  
 
 
 , 1, 2i  , 
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                          
2

2

2, x x d   




  ,   
2

2

1/2

2

2x d 




 
  
 
 
 . 

        iH 1 , 1, 2i   are the usual real Sobolev spaces of first order. We define a 

closed subspace of the space  1

1 H  as  

                                       101

1

1

1 on e. a.0:
1

 uHuH   , 

where     2/1

1

1

0 : HH  is the trace map of order zero and  2/1H  is 

the Sobolev space of order 
2

1
 defined over  , as introduced by Lions and 

Magenes [10]. Observe that the norm in  1

1

1
H : 

                                            
 

2/1

1

2

1

1
1

1 

























  

 



n

i i
H

dx
x

u
u   

and the norm of the real Sobolev space  1

1 H  are equivalent, because the 

Poincaré’s inequality holds in  1

1

1
H . Thus, we consider  1

1

1
H  with the 

above gradient norm.  

          The map      2

2/1

211 ,,:  HHH   is the Neumann trace 

map on    21 ,,  HH   and 

                                           ,)(:, 21

iii LuHuH   2,1i  

are equipped with the norms 

                                           
  1

1/2
2 2

, i iH i
u u u

  
   , 2,1i . 

         Assume that 

                         1( )if C R ,    2

1 1i if s c s   , 1 0 , 1,2ic i  ,                       (9) 

                                         
 

liminf 1
i

s

f s

s

  , 2,1i .                                               (10) 

                                       1( ), , 0,C R s c s c                                              (11) 

 s  is monotone increasing function on ( , )   with  

 0 0  .                                                      (12) 
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For some results instead of (9), we assume that the nonlinearities 
2 ( )if C R satisfy the conditions 

                                        2 21 , 0i i if s c s c    , 2,1i .                                  (13) 

We will form the initial-boundary problem (1)-(8) in the phase space  

             
     

        
1

2 2

1 2

1 2 3 4 5 6 1 1 2 1

1 2 2 2

3 2 4 2 5 2 6 2 1 3

, , , , , : , ,

, , , , ,

V w w w w w w w w H w L

w H w L w L w L w w



 

     

        
 

which is Hilbert space with the norm                 

  
           1 2 1 2 2 2

1 1 2 2 2 21

2 2 2 2 2 2 2

1 2 3 4 5 6V H L H L L L
w w w w w w w

      
       

for  1 2 3 4 5 6, , , , ,w w w w w w w V   . We introduce the functional  

     
1 2

2

1 1 2 3

1
,

2
w V

E t w F w dx F w dx
 

     

where    
0

s

i iF s f s ds  , 1, 2i  , which formally satisfies the equality 

                                     
2

2 2 2

1 21 2

w
t t t

dE
u

dt
    


                                       (14) 

for the solution  , , , , ,t t tu u      of the problem (1)-(8). 

         We introduce the linear unbounded operator  :A D A V V  ,  

  2 1 1 1 2 4 3 3 2 4 6 2 5 6, , , , ,Aw w w w w w w w w w w w w            , 

       

     

     

  2 2 2 2
2

2

1 2 3 4 5 6 1 1

1 2 1

2 1 3 2 4 2

2 4 6 1 3 2

, , , , , : ,

, , ,

, .

D A w w w w w w w V w L

w H w L w H

w w w w w w  
   

     

      

   

 

The condition  
2 2

2

6 1 3 2w w w w  
 

    interpreted in a weak 

sense as 

             
1 2

1 1 3 3w w dx w w dx   
 

          
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                                           
2 2

2 2 6 2w d w d  
 

                                             (15)        

for    1 1

1 2,H H        such that 
2 2

 
 
 . We introduce the 

nonlinear function :V V   as  

                                            1 1 2 30, ,0, ,0,0w f w f w     for w V  . 

Тhen the problem (1)-(8) has the following form 

                                            
 

  0

,

0 ,

tw Aw w

w w

 




                                             (16) 

where  , , , , ,t t tw u u      and  0 0 1 0 1 0 1, , , , ,w u u V     .  

In order to consider strong solutions, we introduce the phase space                

          

        

       

  

1

1/2 1/2

2 2 2
2

2 2
2

1 2 1

1 1 2 3 4 5 6 1 1 1

2 1

2 2 2 2 1 3 2 4

6 1 3 2

, , , , ,

: , ,

V w w w w w w w H H H

H H H H w w w w

w w w w  



  


 

       

         

  

 

which is Hilbert space with respect to the norm 

                           
         

   

1 2 1 2 1
1 1 1 1 2 21

1/2 1/2

2 2

2 2 2 2 2

1 2 3 4

2 2

5 6 .

V H H H H H

H H

w w w w w

w w

     

 

    

 
 

         By the smoothness of the boundary  , it is easy to see that 

                                                              1V D A Z , 

where Z  is a subspace of the space V : 

                                 
1

2

1 2 3 4 5 6 5 6 2, , , , , : ,Z z w w w w w w V w w H
 

     
 

. 

         Definition. Assume that  0 0 1 0 1 0 1, , , , ,w u u V     . The function 

  0 0, ;w C V   is called a weak solution of the problem (16), if it satisfies the 

equality 

                                                      0

0

t
A t sAtw t e w e w s ds


    
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for 0t  . 

        Let 
A  be the adjoint of the operator A . It can easily be proved (see [16]) 

that the function   0 0, ;w C V   is a weak solution of the problem (16) only if 

for each   ADz  the function   ,
V

w z  is absolutely continuous on  0,T  

for each 0T  and satisfies the relation  

                                                  , , ,
V V V

d
w t z w t A z w t z

dt

     

for almost all   ,0t  and the initial condition   00w w . 

3. Basic results 

The existence and uniqueness of solutions, as well as the regularity of 
solutions of the problem (16) are established in the next theorem.  

 Theorem 1. Let the conditions (9)-(12) be satisfied and let 0w V . Тhen 

there exists a unique weak solution   0 0, ;w C V   to the problem (16). 

Moreover, if 1w , 2w  are solutions on  0,  to the problem (16), corresponding 

to two initial data 10w  and 20w  with 10 V
w r  and 20 V

w r  ( 0r  ), then 

there exists a positive number   depending on r  such that for all 0t   

                                                2 1 20 10

t

VV
w t w t e w w   .                            (17) 

If, in addition, we assume that the functions  1, 2if i   satisfy 

conditions (13) and that 0 1w V , then the corresponding weak solution will 

possess the regularity property 

                                               1 0

10, ; 0, ;w C V C V                                 (18) 

and is called a strong solution. 
 Theorem 1 and the fact that the system (14) is autonomous readily imply 
the following assertion. 
 Corollary. Under conditions (9)-(12), system (16) generates strongly 

continuous semigroup  S t  in the phase space V . This semigroup is defined by 

the formula  

                                0 1 0 1 0 1, , , , , : , , , , ,t t tS t u u u u         
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where     0, , , , , 0, ;t t tu u C V       is the weak solution of the problem 

(16) corresponding to the initial data  0 1 0 1 0 1, , , , ,u u V     . 

Proof of Тheorem 1. The fact that the set  AD  is dense in V  can be 

proved by analogy with [2, theorem 2.1]. The methods for proving the theorem in 

the above indicated paper can be used to prove the fact that the operator A  is 

closed and dissipative, i.е.,   0, wAw  for each  w D A . Indeed, since 

                                          
 

   1
11

2 1 2 1 2 11 1
, , ,

H
w w w w w w

 
    , 

                                     
 

     1
2

4 3 4 3 4 3 22 2
, , ,

H
w w w w w w w


      

and using (15) for each  ADw  we have the relation 

                       

           
2

1 2 1 2 3 4 3 4 6 2 21 1 2 2
, , , , ,w w w w w w w w w w w


           ,   

we see that the following relation holds for  ADw : 

   
 

   
 

     

       

       

1 1
1 21

2 2

2 2

2 1 1 1 1 2 2 4 31

3 3 2 4 4 6 5 2 5 6 62

2 1 1 2 1 2 2 3 41 1 1 2

3 4 2 4 4 2 6 6 62 2

, , , ,

, , ,

, , , ,

, , , ,

H H
Aw w w w w w w w w w

w w w w w w w w w w

w w w w w w w w

w w w w w w w w



 



 

  

 

 

      

        

         

     

      (19)            

        

        

    

22

2 2

2 22

6 2 2 1 2 2 2 4 4 2 61 2

6 6 2 2 1 2 2 2 4 41 2

2 2 2

6 6 2 2 1 2 2 4 61 2

, , , ,

, , , ,

, , 0.

w w w w w w w w w

w w w w w w w w

w w w w w w w

  

   

    



 

 

     

     

      

 

If we prove that the range of the operator AI   is the entire space V , 

i.e., that   VAIR  , then according to the Lumer-Phillips theorem, this 

should imply that A  is the generator of a contraction semigroup in V . 

To this end, we write the equation   gwAI   in an explicit form as  

1 2 1w w g    in  1
2
L , 

2 1 1 1 2 2w w w w g       in  1
2
L , 

3 4 3w w g     in  2
2
L ,    
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4 3 3 2 4 4w w w w g       in  2
2
L ,    

5 6 5w w g     in  2

2L  ,    

2
6 2 5 6 6w w w w g 


     in  2

2
L ,  

or if  0   as  

2 1 1w w g   in  1
2
L , 

 2

1 1 1 2 1 1 11 w w g g g            in  1
2
L , 

4 3 3w w g    in  2
2
L ,    

 2

2 3 3 4 3 2 31 w w g g g            in  2
2
L ,    

 5 5 6

1
w g w


    in  2

2L  ,    

2
6 1 1 5 6

1 1
w w g g g  

 

 
      

 
 in  2

2
L .  

 Hence, considering the relation  
2 2

2

6 1 3 2w w w w  
 

   , we 

conclude that the equation   gwAI   is equivalent to the boundary value 

problem 

                          2

1 1 1 2 1 1 11 w w g g g            in  1
2
L ,                (20) 

                        2

2 3 3 4 3 2 31 w w g g g            in  2
2
L ,               (21) 

                                 2 2

1 3 2 1/ 1w w w w            

                                         2

1 5 6 / 1g g g                                             (22) 

in  2
2
L  for 0  ,  w D A , where 

                            2 1 1w w g  , 4 3 3w w g   ,  5 5 6 /w g w    ,  

                                               6 1 3 2w w w w     .                                               (23) 

In other words, the equation   gwAI   is solvable, because there 

exist 1w  and 3w , from  1
1

1
H  and  2

1
H , respectively, such that the 

equations (20)-(22) are satisfied. The normal derivative is interpreted by analogy 
with (15). Consequently, the problem (20)-(22) is equivalent to the relation 
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       

        

     

22
2

2

2 2

1 1 1 1 1 2 3 211 2

2 2

3 2 2 1 1 12

1 1 2 2 3 11 2

1 , , 1 ,

, , / 1 ,

, , ,

w w w

w w w

h h h

        

      

  






        

       

  

   (24) 

for all    1 1

1 1 2 2,H H      such that 
2

1 2 


 , whеre                                                           

 2

1 2 1 1 1 1 ,h g g g L       

 2

2 4 3 2 3 2 ,h g g g L       

     2 2

3 1 5 6 2/ 1 .h g g g L           

  If 0  , the left-hand side of the relation (24) defines an inner product 

оn    
1

1 1

1 2H H     equivalent the ordinary one. Since the right-hand side is a 

continuous linear functional of  1 2,  , it follows by the Riesz theorem that 

there exists a unique solution  1 3,w w  to the equation (24). This being done, the 

other components of the solution w , i.e., 2 4 5 6, , ,w w w w  can be determined 

from the relations (23). 

According to the condition (9), the function :V V   is locally Lipschitz 

continuous; therefore for each 0w V  there exists a    max max 0 0,t t w    

such that the problem (16) has a weak solution   0

max0, ;w C t V . Let’s prove 

that maxt  .  

If  , , , , ,t t tw u u V      is a solution to the problem (16), as in the 

case of (19), we can obtain that  

                
2 2

2 2 2

1 21 2
,w

t t t t t

dE
u u u

dt
     

 
     ;             (25) 

integrating (25) from 0  tо  t , we have 
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   

   

   

1 2

2 2

1 2

2

1 2

2 2 2

1 21 2

0

2

0 1 0 2 0

2 2

,

2 2

V

t

t t t t t

V

w F u dx F dx

u u u d

w F u dx F dx



      



 

 

 

  

    

  

 



 

              (26) 

for all  max0,t t . 

According to (10), there exist  0,1i   and  0 1, 2
if

k i  such that                   

                                                
1

1

2

1 1 1
2 1 ,fF u dx u k


                        

                                                
2

2

2

2 2 2
2 1 .fF dx k  


                             (27)                                                                    

 Using (27) in (26) and according to (9), it is easy to get that 

                                                  
2

0V V
w C w  

for all  max0,t t  and it means that maxt  .  

 Now let’s prove the estimate for continuous independence, i. е., (17). 
Setting  

                 
 

 
2 1 2 1 2 1 2 1 2 1 2 1 2 1, , , , ,

, , , , ,

t t t t t t

t t t

w w w u u u u

u u

       

   

         


 

and 0 20 10w w w  , it is easy to get that 

                                           
2

22 2 2

1 21 2

1

2
t t tV

d
w u

dt
    


     

                                             1 1 1 2 2 1 2 21 2
, ,t tf u f u u f f      .            (28)   

 According to the condition (9), we obtain                                                                   

                                                  1 1 1 2 1 11
, t tf u f u u C R u u  ,       

                                                  2 1 2 2 2 22
, t tf f C R      ,                (29)                                                             

where R  is a positive number such that  0i V
w R  for 2,1i . Then using 

Gromwell’s lemma from (28) and (29) we obtain the validity of (17).  
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According to the assumptions (13) on if , the contraction 

   ADAD  :  is locally Lipschitz continuous. Тhen if 10 Vw   (consequently, 

 ADw 0 ), then the corresponding weak solution w  satisfies the relation 

                              1 00, ; 0, ;w C V C D A                               (30) 

(see [21], Theorem 2.5.6). 
Now we consider the following initial problem in 

   1/2 1/2

2 2X H H    :  

                                                                 
  0

1

,

0 ,

tz Kz y

z




 


 
  
 

                                              (31) 

     

                                
 

 

5

6

z t
z t

z t

 
  
 
 

 ,  
0 I

K
I I

 
  

  
,   

 

0

t

y t
u t

 
  

 
, 

where tu  is the second component of the solution w . Тhen, according to the 

inclusion (30) we conclude that   0 0, ;y C X  . Since  K L X  

(consequently, B  is a generating operator of a uniformly continuous semi group 

in X ) and   Xz 0 , we obtain that the problem (31) has a unique solution 

  1 0, ;z C X  . Comparing the problem (31) with the problem (16) (the two 

equations in (31) are equivalent to the last two equations in (16)), by virtue of the 
uniqueness we conclude that 

                                       5z t t   and     6 tz t t  

for all 0t . These identities, together with (30), yield the inclusion (18). 
 Theorem 1 is proved. 
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