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Abstract

We show that the trigonometric Poschl-Teller potential well problem of the non-relativistic
guantum mechanics is equivalent to a certain model of a linear singular oscillator with the
position-dependent mass of the form M (x) = a?m,/(a® — x2), 0 < x < a. We found an
explicit form of the functions and energy of the wave functions and discrete energy spec-
trum for this model. Wave functions are expressed through the Jacobi polynomials. At the
limit when a — o equation of the motion, wave functions and energy spectrum of the
model correctly reduce to corresponding results of the usual non-relativistic linear singular
oscillator with a constant mass m,.
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1. Introduction

The position-dependent mass concept is one of the successfully developed di-
rections of modern quantum mechanics during the last decades [1-8]. Their main
attractivity is due to two important reasons: the first reason is that they have a huge
number of applications for an explanation of the electronic structures of the various
solid-state heterostructures thanks to the possibility of introducing the confine-
ment effect successfully through the position-dependent mass; the second reason
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is related with the certain analytical expressions of the mass varying with position,
which leads to the exact solutions of the corresponding Schrédinger equation. All
obtained analytical solutions of the Schrédinger equation can reproduce correctly
the known similar quantum mechanical systems if one manages to remove the con-
finement effect and return the position-dependent mass to its constant or homo-
geneous analogue.

Recently, we have developed the quantum singular oscillator model with the po-
sition-dependent mass [9]. It is well known that the singular oscillator has exact
solutions in the framework of non-relativistic quantum mechanics [10]. Its wave-
functions of the stationary states are expressed through the generalized Laguerre
polynomials and the energy spectrum exhibits close similarity with the non-relativ-
istic guantum harmonic oscillator — it is equidistant and consists of an infinite num-
ber of energy levels. At the same time, the trigonometric Poschl-Teller potential
well is also one of the exactly solvable problems of the one-dimensional non-rela-
tivistic quantum mechanics [11, 12]. It has an energy spectrum with drastically dif-
ferent behavior than the non-relativistic quantum harmonic oscillator energy spec-
trum, additionally, its wavefunctions of the stationary states are expressed through
the Jacobi polynomials. In this paper, we are going to show that the quantum sin-
gular oscillator with certain analytical position dependencies on its mass and the
trigonometric Poschl-Teller potential well problem of the non-relativistic quantum
mechanics can be directly connected through the elegant mathematical transform
tool between both of their exact solutions.

2. One-dimensional Poschl-Teller potential well

One writes the following Schrédinger equation for the one-dimensional Poschl-
Teller potential well [11, 12]:

2 g2 _ _
{_h_d +1V Kk (x 1)+A(/1 1)]}1/):&/). (2.1)

2modx? 2 °|sin2ax = cos?ax

Here, k > 1, 1 > 1 and the notation V, = A%a?/m, is introduced for simplicity. In
general, the behavior of the one-dimensional Péschl-Teller potential well is period-
ical. Therefore, we are going to study only the region 0 < x < m/2a, where the
potential becomes infinitely high at the borders of this region. It means that the
wavefunction has to possess the following boundary condition:

Y(0) = ¢Y(n/2a) = 0. (2.2)
Introduction of the new variable
y = sin? ax, 0<y<1 (2.3)

converts eq. (2.1) as follows:
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= 2.4
4| q? y 1—y u=0 (2:4)

where, the notations k = \/2myE /h and u(y) = ¥(x) are introduced now.
As it is shown in [1], the solution to eq. (2.4) in terms of the stationary wavefunc-
tions can be written as a ,F; hypergeometric function of the following behavior:

u, (x) = ¢}, sin® ax cos* ax ,F, (—n, K+A+nk+ %| sin? ax). (2.5)

Exact expression of the energy spectrum corresponding to the analytical solution
(2.5) will be as

1
En=§V0(K+A+2n)2, n=0,1,23, (2.6)

Now, one can use the following definition of the Jacobi polynomials thwough the
-F; hypergeometric functions of the (2.5) type as follows [13]:

(u+ Dy

O T

1—-2z
oF; (—n,x+u+v+ Lu+ 1|T)' (2.7)

which allows us to rewrite eq.(2.5) in terms of the Jacobi polynomials:

(-3

A=y
Yn(x) = ¢, sin® ax cos* ax P, 2 2)(cos 2ax). (2.8)

Cc, is the parameter of the orthonormalization and it can be computed analytically
from the following orthonormalization integral:

/2a

[ o @nGodx =1 (2.9)
0

3. The singular oscillator model with the position-dependent mass

In this section, we will construct the linear singular oscillator model. We assume
that its mass varies with position. Another initial assumption is that the model un-
der construction is located in the infinitely deep potential well with the width a. In
order to apply these two initial conditions, one introduces the following potential:

M) w?x? + i,
2 xz

00, x<0andx > a

0<x<a

V(x) = (3.1)

Next, we need to choose the free Hamiltonian ﬁo and the function of the mass
changing with position M = M(x). Definition of the free Hamiltonian initially re-
quires that it has to preserve its hermiticity under the any generalization. Then, one
supposes for it:
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I:I\O = ﬁOBD + Vfree(x). (3'2)

~ BD . . . .
Here, H,  is the BenDaniel-Duke approach to the kinetic energy operator for the
case of the position-dependent mass generalization and it has the following exact

expression:
2
AOBD = _h_iM—l i’ (3.3)
2 dx dx
and Ve (x) can be defined as follows [8]:
M’ hZM" ,
Vfree(x) = Af 2M2 - Bf 2M3 . (33 )
Here, Ay and By are the arbitrary real constants.
We select the mass changing with position as follows:
M(x) = a’my/(a? — x?), 0<x<a (3.4)
Then, one performs simple computations and obtains that
M’ 2x M" 2 8x?
—_———, — = + (3.5)

M a?2—x%2 M a?—x2 (a?-—x2)%

Its substitution at (3.3) yields the following analytical expression for the free po-
tential Viyee ():

Then, our full Hamiltonian should be defined as follows:
H=Hy+V(x) = H"" + Vops(x) (3.7)
where,
Verr(x) = Viree (x) + V(). (3.8)
Their substitution at the one-dimensional Schrédinger equation ﬁw = E yields

(az _ xz) dzl/) — Zxd_l/) n ZmoazE _ Zmoazg _ /104(14.9{2 w —0
dx? dx h2 h2x2 a? — x2 ’

Ao = ymow/h. (3.9)

Introduction of the dimensionless variable ¢ = x/a simplifies (3.9) as follows:
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€1 &2
2 1-¢
Here, ' = dy/d&, " = d?y/d&? as well as the following constants are intro-
duced for simplicity of the second order differential equation:

(1—52)¢”—2€¢’+<c0— )¢=0, 0<é&<1,  (3.10)

2mya’E 2myg
= hz ) C1 = hz )

More simplification of the above equation requires introduction of the one more
new dimensionless variable & = sin az, where now the condition 0 < z < /2a
holds. Then, one obtains that

Co = Cy = /104(14. (311)

d 1 d d? _ 1 d? bt d (3.12)
d¢  acosazdz’ dé2  a2cos?az\dz? aranazy, ) '
Substitution of (3.12) as eq.(3.10) yields:
d? d c c
- - 2 _ 1 _ 2 —
172 atanaz pp +a (co +cy S — az)] P =0. (3.13)

Let’s try to rewrite eq. (3.13) in the same manner as eq. (2.1). One needs to note
that eq. (3.13) is a second-order differential equation of the following general form:

azlp" + all,[)' + aoll) = 0, (314)
where,

1 C2

ag =Co+ ¢y — a, =—atanaz, a, =1 (3.15)

sinfaz cos?az’

Then, we look for the solution of (3.14) as

Y=f-o. (3.16)
Substitution of (3.16) at eq. (3.14) leads to the following equation for ¢:
bz(p” + b1§0' + bo(p = 0, (3.17)
where,
! n !
b0=a0+a1—+a2— b1=a1+2a2 b2=a2=1. (318)

f f’ f’
Comparison of (3.17) and (2.1) requires that b; = 0 should hold. This condition
leads to the following analytical expression for f:

f = 1/Veos az. (3.19)

Hence, one easily computes that

54



Shakir M. Nagiyev, Elchin I. Jafarov / Journal of Physics & Space Sciences, 2024, v1 (4), p. 50-56

o1 " a? 3a?
L _Zatanaz, L =%2__°% 3.20
f 2 atanaz f 4 4cos?az (3.20

Their substitution at (3.18) leads to the following analytical expression for bg:

1 c c 1
b0=a2 (C()+CZ +_)_a2( ! + 2 ), EZ=C2_Z' (321)

4 sin2az cos?az
Now, one observes that eq.(3.14) becomes as follows:
d? 1 o ¢y
—+a2<c +c +—)—a2(, + ) =0, 3.22
dz?2 07 2 Ty sin2az cos?az v ( )

and it almost completely overlaps with eq. (2.1) that is the Schrodinger equation of
the trigonometric Poschl-Teller potential well problem. In order to show complete
overlap, one needs to multiply both sides of eq. (2.1) to — 2m/A2. Such a multpli-
cation gives
> myVylk(k—1) 2QA-1)
{dx2  R2 [ sin? ax + cos? ax *

k2}¢ —0 (3.23)
Performing simple computations, one observes that
m()VO/hz = az.

Therefore, one obtains slight change in eq.(3.23) as follows:
d? ,[kGe—1) 2 -1)
——-a
dx?

sinfax = cos?ax
Now, comparison of (3.24) with (3.22) allows to obtain exact expression of the
energy spectrum

+ kz}z/; =0. (3.24)

242 , 1 2
FMSO _ (2 24 -1 2 1) ’
n g n+i,"a +2\/ + 8myg/h?* +
¢, =k(k—1),¢6, =11 —1). (3.25)

The wavefunctions of the stationary states of both quantum models completely
overlap.

4. Conclusions

The trigonometric Poschl-Teller potential well problem is one of the thoroughly
studied quantum mechanics problems. However, the quantum singular oscillator
with certain analytical position dependencies on its mass is one of the recently de-
veloped concepts of the non-relativistic quantum mechanics. These two problems
are exactly solvable and stationary wavefunctions of both these problems are writ-
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ten down in terms of the Jacobi polynomials. We have shown that the quantum
singular oscillator with certain analytical position dependencies on its mass and the
trigonometric Poschl-Teller potential well problem of the non-relativistic quantum
mechanics can be directly connected through the elegant mathematical transform
tool between both of their exact solutions.
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