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Abstract

In this paper, we consider the eigenvalue problem for the equation of a vibrating
beam with a spectral parameter contained in the boundary conditions. The general
characteristics of the location of eigenvalues on the real axis are studied, the
multiplicities of eigenvalues are found, and the oscillatory properties of the
eigenfunctions of this spectral problem are investigated. Moreover, asymptotic
formulas for the eigenvalues are obtained and sufficient conditions are established for
the subsystems of root functions to form a basis in Lebesgue spaces.
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1. Introduction

We consider the following spectral problem
2y)(¥) =y (x) = (@(x)y'(x)' = 2y(x), 0<x<1, e8]
y"(0) =0, (2)
Ty(0) -aty(0) =0, (3)
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y"(1)—-bay’'(®) =0, (4)

Ty(@) —cay(@) =0, (5)

where 1R is a spectral parameter, Ty=y”"—qy’, q is a positive
absolutely continuous function on the interval [0, 1], a, b, ¢ are positive

constants.

This problem describes small bending vibrations of a homogeneous beam
of constant stiffness, in the cross sections of which a longitudinal force acts, at
the left end of which a tracking force acts, and at the right end the inertial load
is concentrated (see, for example, [9, 19, 20]).

Eigenvalue problems for ordinary differential equations with a spectral
parameter in boundary conditions have been considered by many authors in
various formulations (see [1-6, 10, 11, 13-18, 21]). The basis properties in
various function spaces of root functions of the Sturm-Liouville problems with
a spectral parameter in boundary conditions were studied in the papers [2, 10,
13-15, 21] (see also their bibliography). The oscillation properties of
eigenfunctions and basis properties in L ,1<p<oo, of root functions of

eigenvalue problems for ordinary differential equations of fourth order with a
spectral parameter in boundary conditions were studied in [1, 3-6, 11, 16-18].
In papers [1, 3-6, 17, 18], the authors establish necessary and sufficient
conditions, as well as sufficient conditions for the system of root functions of
considered problems to form a defect basis (with a finite number of defects) in
the space L ,1< p <o

This paper is a continuation of the research that began in the above-
mentioned papers. Here studied the oscillatory properties of the
eigenfunctions and their derivatives, obtained asymptotic formulas for
eigenvalues and eigenfunctions, establish necessary and sufficient conditions,
as well as sufficient conditions for the subsystems of root functions of problem
(1)-(5) to form a basis in the space L (0, 1),1< p<oo,

2. Properties of eigenvalues of problem (1)-(5)

Lemma 1. The eigenvalues of problem (1)-(5) are real.
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Proof. By following the arguments in Theorem 3.1 of [17] we can show
that for each Ae€C there exists a unique nontrivial solution y(x,4) of

problem (1), (2), (4), (5) up to a constant factor. Then each nonzero
eigenvalue of problem (1)-(5) is a root of the following equation

Ty(0,4) —aty(0,4) =0. (7)

Let 1 eC\R be the eigenvalue of problem (1)-(5). Then A is also an

eigenvalue of this problem because the coefficients of the equation and the

boundary conditions are real. In this case y(x,1) =m is eigenfunction of

problem (1)-(5) corresponding to the eigenvalue A.
It follows from [1, formula (3.4)] that

il y(x ) dx+aly(0,A)° +bly' @A) —c|y@ ) [=0. (8)

Next, multiplying both sides of (1.1) by y(x,4), integrating the
resulting equality in the range from Oto 1, using the formula for integration by
parts and taking into account (2)-(5), we get

HIy" oG D) 1 +a001 YO, D) Jox=

0

z{iw(x,wdx+a|y(o,z)|2+b|y'(1,z)|2—c|y(u)|2}. 9)
By (8) it follows from (9) that
HIlY' (AP +a001y (6 D) Jox =0,

0
From the last relation we obtain y'(x, 1) =0, and consequently,
y (x, 4) =const =0,
which contradicts Eq. (1). The proof of this lemma is complete.

Lemma 2. The nonzero eigenvalues of problem (1)-(5) are simple.
Proof. Let 1R, A1#0, be the double eigenvalue of problem (1)-(5).

Then by (7) we have

" : "1, 4) ¥N'@LA
1,A)-bay'(L, 1)=0 = _p =" =0. (1
y'@ A)—bAy'(1,2) =0 and ) bA i by'(L1)=0. (10)
By [1, formula (2.21)] for any A,z € R\{0} we have
”1, _ ”112‘ , ) i _ ll,i
ACYY)) i/l( )y 2y +y' @y Y& =yLAy)
u—A
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(}) y(X, )y (x,2)dx+ay (0, )y (0,2) +by'L, ) y' (L, A) —cy (L, )y (L, 2).

(11)
Passing to the limitin (11) as # — A, we obtain
u"LA) ., " 'L 4)
— LA+vy'(LA =
5, JEA+HY LA
y2(x A)ydx+ay 2(0,2) —cy? (L, 2). (12)
0

By (11) we get

V@A) =bay'a) and D EA VG by (a3)
oA oA
Using (13) from (12) we find the following relation
[y2(x A)dx+ay 2(0,2) +by"* (L A) —cy? (L A). (14)
0
Since 4R, 1#0, according (14) from (9) we obtain

Y™ (6, 2)+ 900y (x A)}dx =0,

whence implies that y (x, 4) = const # 0, which contradicts Eq. (1). The proof of

this lemma is complete.

3. Operator treatment of problem (1)-(5)

Let H be a Hilbert space L, (0, 1) ® C*® with the following scalar product

(9,9, =}y(x)@dx+a’lm§+b’lnf+c’1l T, (15)
0

where

g={y.m,n1}, 9={I,st,r}.
We define the operator
Ly = Ly, m,n, I} ={¢(y),Ty(0), y"@), TyD)}

on the domain

D(L)={y={y.m.n,Il}e H: yeW, (0.1),£(y) € L, (0. 1), m=ay(0),
n=by'(1),l =cy®)},

which is dense everywhere in H. Then problem (1)-(5) is reduced to the

following operator equation
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Ly =29, §  D(L). (16)

In this case, the eigenvalues A4,,k €N, of problems (1)-(5) and (6)

coincide with each other (counting multiplicities), and there exists a one-to-
one correspondence between the root functions of problem (1)-(5) and the
root vectors of problem (6),

Yo © Y ={yo.m.n. L} me=ay,(0), n = bYIi @1, =cy, D).

In the case of a>0,b>0 and c<O0, by [5, Theorem 4.1], the operator L
is a self-adjoint in the space H and the system of eigenvectors of this operator
forms an orthogonal basis in H.

In the case of a>0,b>0 and ¢ >0 it is easy to see that the operator L is
not symmetric in H. In this case we introduce the operator J:H — H defined
by

J{y,m,n, 1}={y,m,n,—l}.

It is obvious that the operator J is unitary and symmetric in H, and its
spectrum consists of two eigenvalues: —1of multiplicity one and +1of
infinite multiplicity. Then this operator generates the Pontryagin space
I1, =L,(0,1) ® C*with the inner product

(9.9, = (3.8, = @y.m 18,561, =]y (0 809 o+

+a'ms+b*nt—clr,

(17)

It follows from [7, Section 3, Propositions 1° and 59 Section 4, Theorem
4.2] that
10. the operator L is J -self-adjointin I1;

29, the operator L" conjugate to operator L in H has the representation
L =JLJ;

30. the system of root vectors {y, }.,, ¥. ={y..m.,n.. L.}, m, =ay,(0),
n, =by, @), I, =cy, (1), corresponding to the system {4, },_,, of eigenvalues of

the operator L, forms an unconditional basis in H.
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4. Properties of solutions of initial-boundary value problem (1), (2),

(4), (5)

By following the arguments in [4] we can prove the following result.
Theorem 1. The eigenvalues of the spectral problem (1), (4), (5) and
y'(0)cosa — y"(0)sina =0, (18)
y(0)cos B +Ty(0)sin =0, (19)
where a, B €[0, /2], are real, with the exception of the case 8 =r/2 and
c=1, when the eigenvalue A=0 has algebraic multiplicity 2, and form an
infinitely non-decreasing sequence {4, («, #)},_, such that
Mla,B)<0< A (a,B)<... <A (a,B)< ... for pe[0,7/2),
M, 7)2)<0=A,(a,z/2)< ... <A (a,7/2)< ... for c<],
Ma,7f2)=0=A,(a,7/2)< ... <A (a,7/2)< ... for c=],
0=A4(a,7/2)< A (e, %/2)< ... <A (e, 7/2)< ... for Cc>1.
Let 4, (0)=4, (7/2,0) and A, (#/2) = A, (x/2,7/2). Then by [4, Theorem
2.3] we get
2, 0) <A (7/2)<0=2,(x/2)<A,(0) < A,(7/2) <A, (0)< ... for c<1,
A 0)< A, (x/2)=0=14,(7/2)<A,(0) < A,(7/2)<2,(0)< ... for c=1
(20)
2,0)< A, (7/2)=0<A,(x/2)<2,(0) < A,(x/2)<2,(0)< ... for c>1.
Let y(x,A) be the solution of problem (1), (2), (4), (5). It follows from

Remark 3.1 of [17] that this function is an entire function of the variable A for
each fixed xe[0, 1]. Then itis obvious that the function

F(y =04
y(0,4)
is defined in the set

B=(C\R)U u (42 (0), 4, (0)),

where 4,(0)=- o, and is meromorphic function. In this case A, (0) and
A, (/2) are poles and zeros of this function, respectively.

Following the corresponding reasoning carried out in the proof of [3,
Lemmas 3.3 and 3.4] and [4, Lemma 3.3], we can show that



Vugar Mehrabov / Journal of Mathematics and Computer Sciences v. 1(2) (2024), 98-116

dF 1 1 2 12 2 }
—_— X, Adx+by"“(LA)—-cy (L A1)}, 21
= yz(o,ﬂ){gy( Jk by (LA -y (LA, 1)
lim F(2)=+co, (22)
ﬂ—»lﬂilr(Tf})—o F(2) =+, 4—>Iﬂi1r(Tg)+0 ()=, (23)
lim F(A)=—o, lim F(1)=+o k>2,
22 (0)-0 A—24 (0)+0

Moreover, for the function F(1) the following representation holds:

ac AC,
"5 06-40)

where c, =i_rfs(o)|:(l), and ¢, <Oand c, >0 for k=2,3, ... .

(24)

Remark 1. It follows from (24) that
" < Cy
F"(1)= ZElm,

whence implies that F"(1) <0 for A1 e(4,(0),4,(0)), i.e., the function F(A) is
concave in the interval (4,(0), 4, (0)).

Now we study oscillatory properties of the function y(x,4) for A€R.

Lemma 4. The zeros of the function y(x,1), A€R, containedin [0, 1) and
of the function y'(x,4), A€R, A#0, contained in (0,1), are simple and
continuously differentiable functions of the parameter A.

The proof of this lemma is similar to that of [17, Lemmas 3.2 and 3.9].
Corollary 1. As A varies, the functions y (x,4) and y'(x,A) can lose zeros

or gain zeros only by these zeros leaving or entering the interval [0, 1] through
its right endpoint x=0 for A>0, and left endpoint x=1 for A<0,

respectively.
Let (1) and 7(4) be the number of zeros contained in (0, 1) of functions

y(x,4) and y'(x, 1), respectively.

Lemma 5. Let A>0. Then we have the following assertions: (i) y(1) =0 if
A1€(0,4,(0)], and y(A)=k-2 if 1e(4,,(0),4,(0)] for k=3,4,...; (ii)
7(1)=0 if 1€(0,4,(0)],and r(1)=k -3 if A1e(4,,(0),4, (7/2)], 7(1)=k-3
or (1) =k -2 if 1e(4,(7/2),4,(0)] for k=3,4,... .
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The proof of this lemma is similar to that of [17, Theorem 3.2] by the use
of Lemma 4 and Corollary 1.
Remark 2. In the case of 1 <0, the number of zeros of functions y (x, )

and y'(x, 1) contained in the interval (0, 1) can be determined as in [3, Section

3, pp- 9-10]. Should be noted that the number of zeros of these functions can
be arbitrary, depending on the location of the parameter A on the negative
axis.

5. Properties of eigenvalues and eigenfunctions of problem (1)-(5)

Remark 3. If =0, then it follows from (1)-(5) that
(Ty)'(x)=0, 0<x<1, (25)
y"(0)=0,Ty(0)=0, y"@) =0, Ty(®) =0. (26)
Hence we have Ty=0. Let ¢, (x), k =1, 4, be the solutions of Eq. (1) that
satisfy the Cauchy conditions (normalized for x=1)

o W=5;, 5=12.3 Tp,M)=5, (27)
where 6, is the Kronecker delta. Obviously, the solution y,(x)of problem
(25), (26) can be expressed as

Yo (X) =C.0,(X) + C,0, (X) + Cy0,(X) + C, 00, (%), (28)
where C,, k =ij, are some constants.
In view of conditions y; (1) =0and Ty, (1) =0, by (27) it follows from (28)
that C, =C, =0.
It is easy see that ¢, =1, and consequently,
Yo () =C, +C,0, (). (29)
From (29) we get
Yo (D =C,0;(1)=0.
By following the arguments in Remark 2.2 of [1] we can show that
@, (1)#0, and consequently, C, =0. Therefore, y=const is a solution of

problem (25), (26), or more precisely, y,=const is an eigenfunction

corresponding to the eigenvalue A=0 of problem (1)-(5) (without loss of
generality we can assume that y, =1).
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Remark 4. Now we consider the following boundary value problem

(TI)'(x) = 29(x) + y(x), 0< x <1,

3"(0)=0,

T9(0) —at3(0)—ay(0)=0, (30)
9"(1) -bA9'(D) —bay'(1) =0,

T9D) -ci9@) —-cy(@)=0,

For A=0 from (30) we get

TH'(x)=1, 0<x<1, (31
3"(0)=0, T$0)—-a=0, (32)
3" =0,TSQ) -c=0. (33)
It follows from (31) that
THX)=X+7,

where 7 is some real constant. Then by the second relation of (32) we have
7 =4a,and consequently, by the second condition of (33) we have 1+a—-c=0.
Thus we have 4=0 is a simple eigenvalue of problem (1)-(5) for c¥a+1isa
double eigenvalue for c=a+1 and it corresponds to the chain consisting of
the eigenfunction y,(x) and the associated function 9, (Xx).
Remark 5. By Lemmas 2 and 3 the eigenvalues (taking into account their
multiplicities) of problem (1)-(5) are roots of the equation
Ty(0,4) —aty (0,1) =0. (34)
If y(0,2)=0 for some AR, 1% 4,(0), then it follows from (34) that
Ty (0,4) =0. Hence A is an eigenvalue of problem (1), (2), (19), (4), (5) as for
S =0, also for f=7x/2 in contradiction with relations in (20). Therefore, the
nonzero roots of Eq. (4.1) are also the roots of the following equation
F(1)-al=0. (35)
Lemma 6. In the interval (—x, 4,(0)), Eq. (35) has no roots.

The proof of this lemma follows directly from relations (20), (22) and
(23) taking into account the condition a>0.
Lemma 7. For each keN, k>3,in (4,,(0),4,(0)), Eq. (35) cannot have

more than one root.
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Proof. Let Eq. (35) has two distinct roots ﬂjl and /{2 in the interval
(4,.,(0),4,(0)) for some natural k, >3 (without loss of generality we can
assume that 5:1 < /{2). Then there exists ZO € (Zl, ):2) such that

F'(1,)-a=0.

Hence by (21) we get

1 {1 2 Py 2 Py 2 Py }
- X, A, )dx + by (L, A,) —cy’ (LA )b —a=0,
V0.0 gy (X, 4) y* (L 4) —cy (L 4,)
which implies that
iyz(x,io)dx+ay2(0,io)+by'2(1,10)—cy2(1,10)=0. (36)

Putting y(x,zo)instead of y(x) in (1), multiplying both sides of the

resulting equality by y (X, ZO), integrating this equality in the range from 0 to
1, applying the formula for integration by parts and taking into account the
boundary conditions (2)-(5) we obtain

i{y"2 (X, 1) +q(x)y'?(x, A)Jdx =

_ N N N (37)
Y206 4, dx+ ay? (0,2,) + by (L 4y) — oy (1. £,) =O0.
0
Taking (36) into account, from relation (37) we obtain
1 ~ ~
g{y”z(x,ﬂ)+Q(X)y'2(x,/1)}dX=0- (38)

Then from (38) it follows that y'(X,Z)EO, which contradicts (1). The

proof of this lemma is complete.
Theorem 2. The eigenvalues of problem (1)-(5) form an infinitely non-

degreasing sequence {A, }_, such that
A <A, <A, <. .. <A <...,
and have the following location on real axis:
A A, €(4,(0),4,(0)),4, €(1,(0),4,(0), ... , 4, €(4,.,(0),4,(0)), ...,
A, <0=4, forc<land c>1 a>c-1,
A,=0<4, forc>1 a<c-1,
A,=0=4, forc>1 a=c-1.

10
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Moreover, for every k eN the eigenfunction y, (X) corresponding to the
eigenvalue A, and the function y, (X) have the following oscillation properties:
(i) the function y, (x) for k>3 has exactly k —2 simple zeros in (0, 1), the
function y,(x) has no zeros in (0,1) for c<1land c>1, a#c—1, the function
y,(X) has no zeros in (0,1) for c>1 a<c-1and can have an arbitrary
number of zerosin (0,1) forc<land c>1 a>c-1
(ii) the function vy, (X) for k>3 has exactly k —3 simple zeros in (0, 1),
y,(x)=0 for c<1 and c>1 a>c-1 vy,(x) has no zeros in (0,1) for
c>1 a<c-1 y/(x)=0 for c>1 a<c-1and y,(x) can have an arbitrary
number of zeros in (0,1) forc<land c>1 a>c-1.
Proof. By (35) (see Remark 5) the eigenvalues (taking into account
their multiplicities) of problem (1)-(5) are roots of the equation
F(1)=aAd. (39)
By Lemma 3 in the interval (-, 4,(0)) Eq. (39) has no roots, and
consequently, problem (1)-(5) has no eigenvalues in the same interval.
By (20), (21), (23) and Remark 3 we have the following relations

A4,0)< A (7/2)<0=4,(7/2)<2,(0) for c<l, (40)
2,(0)< A, (x/2)=0=4,(7/2)<4,(0), for c=1, (41

A 0)<A,(r/2)=0<A,(x/2)<A,(0) for c>1. (42)

Nim B ==, F(4(1/2) =F(4,(7/2)) =0, lim F(1)=—c. (43)
F'(0)=c-1. (44)

Moreover, by Remark 1, the function F(A1) is concave on the interval
(4,(0), 4, (0).

If c<1, then in view of (44) we get

F'(0)<0 for c<1 and F'(0)=0 for c=1. (45)

Since a>0and F (1) is concave on (4,(0),4,(0)) by (45) the graph of the
function G(A) =aA no tangent to the graph of the function F(A1) at the point
A=0. Then, according (40) and (43), the graph of the function G(1)
intersects the graph of the function F (1) for c<lat two points 4,(0)< 4, <0
and 4, =0.



Vuqar Mehrabov / Journal of Mathematics & Computer Sciences v. 1 (2) (2024), 98-116

If c>1 and a=c—1,then the graph of the function G(1) no tangent to
the graph of the function F(A) at the point A =0. Then in this case the graph
of the function G(A4) intersects the graph of the function F(1) at two points
4, (0)<A4, <0 and 4,=0 for a>c—1 and 4, =0 and 0<A4,<A4,(0) for

a<c-1.
If c>1 and a=c—1, then the graph of the function G(1) tangent to the

graph of the function F(A) at the point A =0. In this case A=0 is a root of
Eq. (39) (also Eq. (35)) with multiplicity two (we believe that 4, =4, =0). By
Remark 4, the eigenvalue A=0 corresponds to a chain consisting of the
eigenfunction y,(x) and the associated function 4, (x).

It follows from (23) that
lim F()=+w, Im F(1)=-w, F(1)>0 if 1e(4,,(0),4, (7/2)),

A 240 (0)+0 A4 (0)-0
F(4,(7/2))=0, and F(1)<0 if 1e(4,(7/2),4,(0)) for k>3.  (46)
Since F(1) e C((4,,(0),4,(0))) in view of Lemma 7 it follows from (46)
that Eq. (45) has unique root A, in the interval (4, ,(0),4,(0)) for k>3. It
should be noted that in this case 1, € (4, ,(0), 4, (z/2)).

The oscillatory properties (i) and (ii) of eigenfunctions of problem (1)-(5)
and their derivatives follows from Lemma 5 and Remark 2. The proof of this
theorem is complete.

Remark 6. By Theorem 2 we have

Y. (X)=y(x,4,) for k=13, ..., 47
y,(X)=vy(x,4,) if c<land c>1, a=c-1, (48)
Y,(X)=y,(x)+dy,(x) ifc>1 a=c-1 (49)
A
where Y, (X) = % and d is an arbitrary constant.

6. Basis properties of root functions of problem (1)-(5)

It follows from [12] that for each k e N the following relation holds:
LY, =AYk + 60 Via (50)
where yk :{yk My Ny Ik}' m,=ay, (0), ne= byll< @1 = CYy, @, 6, =0 if yk is

12
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an eigenvector, 6, =1 if §, is an associated vector.
Let {9:}7,, 9 ={%,s;.t;,r’}, be the system of root vectors of the
operator L. Then by the formula (3) of [12] we get
LG =249 +6,,9... (51)
Since the operator L* has representation L' =JLJ (see property 2° of
the operator L) by Remark 6 it follows from (47)- (51) that

A

9, =7y, for k=23, ..., (52)
9 =3y, if c<land c>1 a=c—1, (53)
& =3y, +ddy, if c>1, a=c—1, (54)

where ¥, ={y,,m;,n;,1;}, m; =m'(4,), n, =n'(4,), I, =I'(4,), and d is an
arbitrary constant.
Let k, y €N such that 4, and 4, are simple. Then by (50) and (51) we

have

Ly, =49, and L'$ =2 9. (55)
Then from (55) we get
(L. 9D = A58,y and (¥, L'9)y =4, (9,9
which implies that
(9:9.), =0 for k= y. (56)

Moreover, by (17), we have
200+ 00y 003k = 4, {12 00+ ay? ) +by* @ ~cay? @) (57)
If 1, #0, then it follows from (57) that
B 8 =035 9 Ju, = [ Y7 00+ ay? (0) +byl O —cay; @ #0.  (58)
If A, =0, then by Remark 3 we have

(99 =19, 9,1y, =1+a-c 20, (59)
In the case of c>1and a=c-1 the eigenvalue 4, =0 is double. Then

by Remark 3 from (52) we get
(V19w =09 Y11y, =1+a-c=0, (60)

and consequently,
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(9209 =195, 9215, +(@ + DT, 951, (61)
(V1,9 w =[¥:, Y215, and (9,.9,), =V, V.15, - (62)

By following the arguments in Lemma 6. 2 of [1] we can show that
[9:.Y21n, #0. (63)

Thus by (56), (58), (59) (61)-(63) we have the following results.
Lemma 8. Let 7, =[Y,, yk]n1 for k=3, and 7, =[y,, 91]1‘[1' 7, =[Y,, 92]1‘11

ifc<land c>1,a#c-1 7,=7,=[Y,Y,], ifc>1 a=c-1 Then r, #0 for
any keN.
Lemma 9. The system {ﬁk}fﬂ, Qk ={9,,S,.t., 1.}, conjugate to the system
{y.},., is determined by
9 =119, (64)
where d =—(d +7;'[9,,9;1,)-

Let i, j and v be different arbitrary fixed natural numbers and

SI ti rl
Ay =18 4 (65)
SV tV rV

Theorem 3. Let i, ] and v be different arbitrary fixed natural numbers.

If A, #0,then the system {y,} of root functions of problem (1)-(5)

=1, k=i, j,v

forms a basis in L (0, 1), 1< p <oo, which is an unconditional basis for p=2. If
Ai,j,v
L,(0, 1), 1<p<oo

The proof of this theorem is similar to that of [2, Theorem 4.1].

Using the asymptotics of eigenvalues and eigenfunctions of problem (1)-
(5), we can establish sufficient conditions for the system to form a basis in
L,(0,1),1<p<oo

By following the arguments in Theorem 5.4 of [4] we can obtain the
asymptotic formulas

=0, then the system {y, }_, .. ;, Is not complete and not minimal in

14
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A, = k_l_l +w+o 1 , (66)
4 4k k

y, (0) = dibcpie Dk[1+q°_—4/c+o(in : (67)
4p, Py

y, (1) = 4ibp°e” D, |1+ % +O[ J (68)

4p, Pr

y. (1) = dicp’e”™ D, 1+q°_—4/c+o[izj : (69)

4p, Pk

1
where D,,keN, is some nonzero constants, q, =/q(x)dx and p, =4/4,,
0

keN.
Note that vy, (1) #0 for any k >3. Then, we can normalize the function

Y., KeN, by choosing y; (1) =1. Hence it follows from (67) that

4
D, =t [1-G =4 o[ L]
dicp, e™ 4p, Py

and consequently, by (67)-(69), we get

0

Y, (0) = (-1)* ﬁp{um[pkn (70)

yk<1>=9pkekak[1+ ! +0(1D (71)
c Co« Pi

Let i, ] and v be different arbitrary fixed natural numbers which are
greater than 3. Then in this case we have s, =7,‘ay, (0), t, =7, by, (1),
r. =—z,cy, (1), and consequently, by (65) we get

S Y, (0 yi@d v:@
A, =ls; t, r|=-abcrizr ]y (0) Y@y, @) (72)
s, t,r, y, (0 v, vy, @

Note that y,(x)=1 and y, (0)#0 for any k eN.

Let c>1 and a<c—1.Then by Theorem 2 we have
O=A4 <A, <...<A < ....
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Let i=1 and j,v, v>3, be arbitrary fixed sufficiently large natural

number such that j isevenand v isodd. Then, by (70) and (71), we have

' 1 0 1

_ .0 y;.(® vy, 1 0 1 b b b
Al,j,V:yj(O) y;(l) yj(l):yj(o) y;(l) yj(l) :ij 1 Epj"’c_z
.0 v.@ v.@ [v.0 v.@ vy.@ b b
P, 1 —p +—

C

p | f o |t f (;) ,, b |10 b?
Cacy2 o P11 ac/2 pi —ep acv2| p; 1 ac/2
-p. 1 p, -p, 1 2p,

2

b
=2p ——(1-p.) <0,
p”ac\/i( o)

whence, by (72), implies that
A, #0.
Thus, by Theorem 3, we have proved the following theorem.
Theorem 4. Letc>1 and a<c-1 i=1and j,v, v>3, be arbitrary

fixed sufficiently large natural number such that | is even and v is odd. Then
the system {y, }.; .. ;. 0f root functions of problem (1)-(5) forms a basis in
L,(0, 1), 1< p <o, which is an unconditional basis for p=2.

Finally we can look at various cases in a similar way.
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