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Abstract

In this paper we introduce a new class of Riemannian metrics on the coframe bundle
over a Riemannian manifold (M, g) and investigate the Levi-Civita connection of these
metrics. Also we calculate the particular values of components of Levi-Civita connection
for different indices.
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1. Introduction

The geometries of the tangent, cotangent, linear frame, linear coframe and
tensor bundles equipped with Sasaki type metrics has been studied by many
authors such as Sasaki S. [13], Yano K. and Ishihara S. [14], Kowalski O. and
Sekizawa M. [6], Salimov A.A., Agca F., Akbulut K., Gezer A., Fattayev H.D. (see [1],
[3], [7], [21], [12]), Cordero L. and Leon de M. [2], Zagane M. [15]. The rigidity of
Sasaki metric has incited some geometers to construct and study other metrics on
above mentioned bundles (see, for example, [3], [4]). Salimov A.A. and Fattayev
H.D. have introduce the notions of homogeneous deformation of the Sasaki
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metric [10] and Cheeger-Gromoll metric (see [8], [9]) on the coframe bundle over
a Riemannian manifold. The main idea in this paper in the new modification of the
Sasaki metric on the coframe bundle. First we introduce a new class of

Riemannian metrics, noted fg on the coframe bundle F*(M) over an n—

dimensional Riemannian manifold (M, g), where f is a strictly positive smooth

function on M. Then, we investigate the properties of Levi-Civita connection f \Y%

(Theorem 4.3) of the metric f g and we calculate the values of components of

fV(Theorem 5.1). All manifolds, tensor fields and connections in the present

paper are always assumed to be differentiable of class C*. We denote by

~P . ~Pp *

3q (M) the set of all tensor fields of type (p,q) on M, and by 3¢ (F"(M))
the corresponding set on the coframe bundle F*(M). The Einstein summation
convention is used.

2. Preliminaries

Let (M,g) be an N—dimensional Riemannian manifold. The linear coframe
bundle F*(M) over M consists of all pairs (X,u”), where X is a point of M
and U" is a basis (coframe) for the cotangent space T;M of M at X [3]. We
denote by 7 the natural projection of F*(M) to M defined by 7(X,u”) = X.
If (U;Xl,Xz,...,Xn) is a system of local coordinates in M, then a coframe
u* =(X%)= (Xl, X2, X ") for Ty M can be expressed uniquely in the form
X% = Xia(dxi)x . From mentioned above it follows that
(ﬂ‘l(U);xl,xz,...,x”,Xll,X%,..., Xr':)

is a system of local coordinates in F*(M), thatis F*(M) is a C* — manifold
of dimension N+N?. We note that indices i, j,K,...,a,B,7,.. have range in

{1,2,...,!’1}, while indices A, B,C,... have range in {L...,n,n+1,...,n+n2}. We

put h, =a-n+h . Obviously that indices h, kgl have range in

yoe
2
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{n+l,n+2,...,n+n2}. Let V be a symmetric linear connection on M with

components F'J( Then the tangent space T(Xu*)(F*(M)) of F*(M) at

(x,u™) e F*(M) splits into the horizontal and vertical subspaces with respect to
V:

T (FM)=H L (F M)V, . (F'(M). ()
From (1) it follows that for every X € 35(F*(M)) is obtained unique
decomposing X =hX +vX, where hX eH(F"(M)), vXeV(F*(M)).
H(F*(M)) and V(F"(M)) the horizontal and vertical distributions for
F*(M), respectively. Now we define naturally N different vertical lifts of 1—
form @e 3V (M). If Y be a vector field on M, i.e. Y € 35(M), then i“Y are
functions on F*(M) defined by (i*Y)(x,u’)=X*(Y) for all
(x,u*):(x,Xl,Xz,...,X”)eF*(M), where u=12,..,n. The vertical lifts
Vi of @ to F*(M) are the N vector fields such that

2 a(i*Y) = a(Y)S,

hold for all vector fields Y on M, where A,u=12,..,n and 5/’} denote the

Kronecker’s delta. The vertical lifts @ of @ to F*(M) have the components

Vi ok 0
\Z W
a)_[vﬂa)kﬂJ_(wké‘jJ (2)

with respect to the induced coordinates (Xi , X7) in F*(M) (see [10]).
Let V € 35(M). The complete lift Ve Jp(F*(M)) of V to the linear
coframe bundle F*(M) is defined by
OV (Y) =% (L, Y) = XE (L Y)"
for all vector fields Y € 335(M), where L, be the Lie derivation with respect to

V. The complete lift V has the components
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Cy/k k
cy — ch _ \Y; a)
vhe | Tl o xsa v

with respect to the induced coordinates (X', X)) in F*(M), (see [3])..
The horizontal lift "V e 35(F*(M)) of V to the linear coframe bundle
F*(M) is defined by
MV GI“Y) =i#(VY) = XAV, Y)"
for all vector fields Y € 33(M), where V,, be the covariant derivative with

respect to V. The horizontal lift AV has the components

Hy, k k
Hy — ) Vk _ \Y | )
Vo X ATV

with respect to the induced coordinates (X', X¥) in F*(M), where Filf are the

components of Levi-Civita connectionon M [10].
The bracket operation of vertical and horizontal vector fields is given by
the formulas

[, 6]=0,
["X,7 01=" (v 0), (5)
[MX,"y]=" [x,Y]+iVo(xa oR(X,Y))

o-1
forall X,Y € 35(M) and @,0 € 3P (M), where R is the Riemannian curvature
of g defined by R(X,Y)=[Vy,Vy]-V|xy; (for more details, see [10]). If f is
a differentiable function on M, Vf = f or denotes its canonical vertical lift to
the coframe bundle F*(M).
Let (U,x') be alocal coordinate systemin M.In U = M, we put
Xo=0/(ox"), 6V =dx',i=12...,n.

Taking into account (2) and (4), we see that
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h
Hx® _p, | % (6)
- \xanw)
. 0
Veg) _p =|
0 lo (52 ith (7)

with respect to the natural frame {8h,6hﬂ}. It follows that this N+n? vector

fields are linearly independent and generate, respectively the horizontal
distribution of linear connection V and the vertical distribution of linear coframe

bundle F*(M). The set {D,;}={D;,, Dhﬁ} is called the frame adapted to linear

connection V on 7 X(U) < F*(M). From (2), (4), (6) and (7), we deduce that

the horizontal lift 'V of V € 3L(M) and vertical lift “*@ of e 32 (M) for

each a =12,...,n, have respectively, components:

h
Hv =v"D, :(Vo J (8)

0
V, a
2@ = a)hé‘ Dh = (9)

zh: S 2
with respect to the adapted frame {D,}. The non-holonomic objects Q K of
the adapted frame {D, } are defined by

K

[Dy,D;]1=9Q,; " Dg

and have the following non-zero components:

Q. ky, -_0 k

Y — _SYTJ
iip igi - ﬁrlk’
k
v — X7 m
Qij = XmRijk |
where Rijkm local components of the Riemannian curvature R.

3. New class of metrics on the coframe bundle F* (M)

Definition 3.1. Let (M, Q) be an N—dimensional Riemannian manifold and
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f:M —>(0, +oo) be a positive smooth function on M. On the coframe bundle

F*(M), we define a new class of Riemannian metrics f g by

fg(" X, YY) =Y (g(X,Y) =g(X,Y)oz, (10)
9. ("X, "9) =0, (11)
"9(“w,"0) = 1 -3,,07 (0, X“)g (0, X*), (12)

where X,Y ES%(M) and ®,0 € 3X(M)..
From (10)-(12) we determine that the metric f g has components
fg(Di’Dj):V(g(aivaj))z Gij»
fg(Dia’Dj):Q
'g(D; ,D;) = f-6,,07(dX', X)g ™ (dx), XI) = f-5,,9"g B X7 XY
with respect to the adapted frame {D, } of coframe bundle F*(M).

From (3) and (4), it follows that the complete lift X of X € 35(M) is

expressed by

X=X ==Xa > (0 X" -Tig X*)a;.
i

n
:_ngvixmaia :_5£X$vixmaiﬁ :—ZV“(Xrﬁvixm),
i a=1

n
EX=AX =Y Ve (X oVX), (13)
a=1

where
X% oVX = X2V, X "dx'.
Using (10)-(12) and (13), we get
n n
fg(°X, oY) = Tg(" X =D Y (X“ o VX), Y = > (X oY)
- p= (14)

n n
=YX YD)+ F-2.376,,07 (X VX, X)gH(XP VY, X7),
a=1p=1
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where

g (X“oVX, X¥) =g" (Xg 0 VX); X[
Since the tensor field ' g e 3,(F*(M)) is completely determined also by its
action on vector fields X and CY,we have an alternative characterization of

"g on F*(M): g is completely determined by the condition (14).

It is known that the Riemannian metric defined by conditions (10) and
(11) is called the natural metric (see, [3], [12]). Following definition , we conclude

that metric | g isincluded in the class of natural metrics.
4. The Levi-Civita connection of ' g

Before studying the properties of Levi-Civita connection 'V of the

coframe bundle F*(M) with the metric "g, we prove the following theorems
that are will be use later.
Theorem 4.1. Let (M, g) be a Riemannian manifold and p:R — R be a smooth

function. Then for all X,Y € 3;(M) and ®,6 Sf(l\/l ), we have
1 "X (p(r)) =0;
2. "0 p(17) =20/ P ()9 @, X ),
3. "X(g7H(0, X)) =g (Vx 0, X);
4.7 o(g (0, X") =679 N (@,0),
where rj = g_l(Xa, X%).
Proof. 1. Direct calculations using (4) give
"X (p(r}) = (X' D) (o)) = X' (0 + X[ T0; )(p(rs)
= X'p(12)5,(12) + X' P (XCTE0, (12) = pl(r2)] X120, (g XX )
FXIXETO; (6°X¢ XE) | = p ()| XIXEXE (Thg® ~Thg")

+X XTI XE023) + X XITHg* X ¢ 620)

= /()] XXX TGS - XXX TR g + XXX (T g
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+X X EXITLg" =0;
2. " o(p(r)) = 209 B, () = P02 1050, (9 XX
i
= P2 @0f 9 (X558 + X{078) = P (0) L) 29X
i i
=260 p'(r2)g (e, X *);
3. "X(g7HO, X M) = (X'D)(g G XS) = X'8,9°6. X
+X'9°0,6 X + X' X Tg"0.528) =-X'THg" g X ¢
X594, X% + X'g*0.0, X ¥ + X'XTLg*“6, = X'g*X (8,6,
“Ti6) = X'g“XIVi6 = g7V 0, X);
4. " o(g7H(0,X ) = Y. @35D; (96 XS) = @548, (9°GX¢)
i i

Zwéﬁ ©6,555! = Za}csﬁ Mg, =679 (w,0).

Theorem 4.2. Let (M,g) be a Riemannian manifold and (F*(M), 'g) its
coframe bundle equipped with the metric fg_:]. Then for all X GS;O(M) and
@,0,1 €32 (M), we have
1 "X("g(" e, ") = X () "g(“ e, "0)+ Tg(* (V). 6)
+1g("w, " (V4 O);
2. Yo" 9("0," 1) = 16,97 (@.0)97 (. X")
+185,97(0. X")g ™ (e,1).

Proof. The proof of Theorem 4.2 directly follows from Theorem 4.1:
1 "X ("g("@,"0) = "X (£ 5,507 (@, X ")g (6, X))
= X(£)8,,97 (@, X“)g (0, X ") + 5,597 (Vx0, X*)g7(0, X”)
+18,59 (@, X*)g (Vi 0, XP) =1 X (f) "g(“w, " 0)
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+19(" (Vy), “0)+ "g(V @, (V4 0));

2. Yo" 9("0," 1)) =" eo(£ 55,97 (@, X")g (1. X7)

= ()3,,97(0, XP)g™ (7, X" )+ 18, (g™ (0, X P))g (. X7)
+138,,97(0, XY a9 (7. X7)) = 5,559 (0,0)g 7 (7, X7)
+138,,0797(0, X")g Hew.n) = 15,9 (@,0)97 (7. X7)
+18,,97(0. X")g M (@.1).

Based on Theorem 4.1 and Theorem 4.2, we prove the following theorem

on the Levi-Civita connection 'V of the coframe bundle F*(M) with the metric
f
g.
Theorem 4.3. Connection 'V satisfies the following relations:
D) "V, Py =" (vygy),

ii) vaXVﬂaz"ﬂ(vxa)+%X(f)Vﬂe,
iii) 'v,, " =iY(f)Vaa), (15)
2f
iv) vaawvf’Hzo for a # f,
fVvawvaﬁz—g_l(a),X“)g_l(H,X“)H(gradf)+r—izg_1(a),6’)vax"‘,
forall X,Y € 35(M), 0,0 € 3V (M).
Proof. The Levi-Civita connection 'V of coframe bundle F*(M) with
Riemannian metric g is characterized by the Koszul formula
2°91 (VY. 2) =X (°g: (V. 2) +Y (°9: (Z. X)) - Z(°g (X, V)
=29 (XY, ZD+ g (V. [Z, XD+ ° g4 (Z,[X,Y]) (16)
for all vector fields X,Y,Z € 35(M).
i) Direct calculations using (4), (5) and (16) give
2'9("Va, Y MZ) =X (T (MY, MZ)+ Y (Tg(MZ, X))
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=HZ(Tg("X, Y )= e (XY Mz + Ta(tY [z, P XD)
+9("Z,["X, FY]) = X (9(Y,2)+Y(9(Z, X)) -Z(g(X,Y))

=Tg(" X, "IY,zy, "IV, Z]+¥R(Y, Z)) + "g("Y, "[Z, X]+ ¥R(Z, X))
+9("Z, PIX, YT+ 7R(X,Y)) = X (9(Y,2)) +Y (9(Z, X))

~Z(g(X,Y) = g(X,[Y, Z]D +9(Y.[Z, X]) +9(Z,[X,Y]) =29(V4Y,Z)
zzfg(H(VaxY)v HZ),

and

2 9"V, MY, ) = P (Ta(MY, e + MY (Tg (g, X))
e YY) = Ta(XG Y, ED + Ta (MY g X))
+1g("a X YD =="g(" X, (v @) + Ta(tY, = (V4 8))

(% DX YT ROGY)) = (v, 3V (X7 oR(X,Y)))

o=1

=3 g (e (X7 SR(X.YY))
o=1

=35, fg e XT)g (X7 oR(X,Y), X7) =0,
from which i:f_éllows that
"WV, Y =R (VY.
ii) Calculations similar to those in i) give
2'9("Vu 0,"2)="X("9("0."2))+ 0" 9("Z," X))
—Hz("g(" X, o) - "g(" X[, 2]+ "g("0.["Z, " X])
+ 9"z, [ X, ol ="0(g(Z, X))+ "9("0,"[Z,X]

SV (X7oREZ, X)) = Tg(0, 3V (X oR(Z, X))
=1 =1

n
= Zéﬂa fg™ (0, X#)g (X o R(Z, X), X?) =0.
o=1

10
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Also by help of (5),(8), (9) and (16), we obtain:
2'g("Viuy 70,78 ="X("g("0, &)+ o "g(" & X))
(g e) - (X[, e+ Tg (e[ e X))
+1g(" e "X, o) =X ("9 ("6, )+ g (v 0), &)
+'9("0," (V4 &)).

Using the first formula of Theorem 4.2, we have
2'g("V.uy 70,8 =1 X (1) "g("0, " &)+ Tg(" (V). &)
+19("0," (V&) + "9 (" (V0), "E) - "9("0," (V&)
=1 X(f)"9("0."&)+2"g(" (V). &),

from which it follows that

"V Vﬂezvﬂ(vxenixmvﬂe.

iii) Direct calculations using (5),(8),(9) and (16) give
2%9¢ ("V,,, Y, "Z) =Yoo (Tg("Y, "2))+ Y (T9("Z, Y o))
="z2("g(“w,"Y) - "9V [MY, P 2]+ Ta("Y,[M2, Y w))
+'9("Z,["@, YD) =Y w(g(Y.Z2)) - "9(" @, "[Y, Z]

£V (X7 ORE,Z) == g (e, 3 (X7 oR(Y, 2))

-3 g (%, (X7 oR(Y,2))

w=1

36,0 @ X ) X7 <R(Y,2),X7) =0,

w=1

and
259 ("vy,, Y, 8 =Yea( g (MY, E) + MY (T (& Ve )
e, MY - Tg (e Y, ED + Tg (MY L[V Vew])
+19(" &M@, YD) = "9 (v &), @)+ "9 (& Ve (Vy@))

11
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~Tg("e N (Vya) - "9V, (Ve )+ 1Y (F) T (Yo, 7 E)
+1Y(f) 'g("w, &),

From which we deduce that

"V, Y =LY(f) o

iv) Direct calculations using (5),(8),(9) and (16) give
2°9: (', "0,"2) =" "g("0,."2))+ "0( " 9("Z, " o))
290, 0)- "g(w,["0." 2]+ "9 ("0.["2, " w))
+'9("Z.[“ 0, "0) =="9(" (V, ), "0) - "9(“ 0" (V,0))
+'9( 0, (V,0)) - "9("0," (V,0) -+ Z(f) "9 (", "0)
=-Z(£)8,59 (0, X*)g (0, X”)
=—5,59 (@, X*)g (0, X”) "g(" (gradf ), "),

where

"g(" (gradf),"z)=g(gradf,z) = Z(f).

On the other hand, direct calculations give
2°g,("V.,, 70, &) ="a("9("0," &)+ "0("9(" &,V w))
(Mg, 0) - "9 (o, [0, ED + Tg (o[, w))
+19(" e 0, o) =0 "g ("0, &)+ 09 ("¢, V@)
~E("g(Vw, 10)) = 15,07 (w,0)g (£, X7)
+15,,07(0,X")g ™ (@,8) + 15,076,590, X*)
+£5,,07(& XG0, 0) - 16,507 (&,0)g 71 (0, X7)

-1 ayq-1
_f5ayg (CO, X )g (5,&)
If we put y # 8 # &, then

Zng(fvvawVﬁH’ Vrg) =0,

from which it follows that

12
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vaawVﬁH =0 for a # f.

If we put ¥ = f = . Calculations like above give

2°9,('Vu,,"0,"¢) = fg(.0)9(&, X)

+fg7(0. X)g H(@.§) + Tg7(0.5)g (@, X )

+fg7(5, X )9 (0, @)~ + g (£, @) g (6, X)

—fg (@, X)g7(£,0) =219 (@.0)g (£, X )

=297 (@,60) " g("X*, "),
from which itafollows that

"V, "0=—97 (o, X)g (0, X*) " (gradf ) +L g (e, )" X “.

Hence theorem is proved. "

5. Components of v
We write

with respect to the adapted frame {DK} of linear coframe bundle F*(M),
where fF'fJ denote the components (Christoffel symbols) of Levi-Civita

connection "'V . Then by using of Theorem 4.3, we get following.
Theorem 5.1. Let (M, g) be a Riemannian manifold and 'V be the Levi-Civita
connection of the linear coframe bundle F*(M) with the metric 'g. Then

particular values of fFE for different indices by taking account of (16) are then
found to be

ré=rf, i =T =0,

Ty =48/ f8l-o/Th,  'TF;=0,

Ty =Fortia,  'TF =T =0 forazp,

frtja =—g"gg" XIX/7 1, fl“:(;ja :Tzzg"Bf‘Xf‘.

13
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Proof. Let X,Y ESO(M),a),HESf(M). Using formulas (15) and (16), we

obtain:
Vi Y =1V, (V1D =X TV, (Y/D)) (17)
=X""(Y)'v,;D; +DY’'D;)= XY 'T¥D,
+X'YI Ty D, +X'9YID;,
and
T(ViY)=(VxY)' D =X1o,Y'D, + X YD (18)
Equating the right-hand sides of equalities (17) and (18), we will have
ré =rf, riy =o0.

Similarly, direct calculations using (15) and (16) give

f Vo f 3 _ylif B
Viy 70= "V, (626,D; )=X""V (526,D; )

x‘D,(
=5/X"(D,0,D; +6;VpD; )=5/X'0,0,D;
+8/X10, 'Tk D +5/X'0, 'T D, (19)
and
(V3 0)+ 2 X ()"0 =57 (X"(0,0; -T56,))D;,

i B —SPXI Bxi
+4 X'0,£526,D; =8/X'0,6,D; ~5£X' IT76,D;

1 yif B
+57 X fi50_49ij0. (20)
Comparing the right-hand sides of equalities (19) and (20), we arrive at the
following

f -k fk, j
ry =0, Ty =-6/ 18,

ij, —
_of

where f; =—-.

By calculations similar to those above we yield

Vi, Y = V0, (D) =50, 'V (Y1D))
=570Y) 'V Dy =67@Y T D = 57wy T D,

14
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i ok
+65 @Y 'TVD (21)
and
Vv j a j a
Z%Y(f) “a):%Yjﬁjfé‘O_a)iDla:%ijjé‘o_a)lDlg (22)
Comparing the right-hand sides of equalities (21) and (22), we deduce followings:
frk _ frk, _ 1 [
riaj—o, rlaj_ﬁ5}’afJ5k'
Now we assume that  # £. Then by using (9),(15) and (16), we have
f \ f f
Vi "0="V s, (676;D; ) =550,V (576,D;)
f f -k
=8506/0; 'V D; =5;0,8/0; 'T}; D
+52w576; ', D =0.

The last relation shows that
Ty, =0, Ty, =0 for a=p.
If & = f.Direct calculations like above give
V.., ""0= 550520, 'TY | D+ 5500, ' T, D
=0, 'Tf, D, + 0, fr{;ja D, =—0"&,X{9"0, X (g" ,)D,
+r_iz 9°0, 0,5, XDy =m0, (-g"g"XX"g" f,D,
+5 915 X{m0;D,

from which it follows that:

is livawva k, ij cavy a
rf; =-gRg"XIXPg Iy = 2glarx

Ia Ja Ia Ja

This completes the proof.
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